激光粉末床熔融成形金刚石增强铝基复合材料

郜文哲 韩笑 魏海滨 路正朕 张利 李晓峰

郜文哲, 韩笑, 魏海滨, 路正朕, 张利, 李晓峰. 激光粉末床熔融成形金刚石增强铝基复合材料[J]. 粉末冶金技术, 2024, 42(2): 122-127. doi: 10.19591/j.cnki.cn11-1974/tf.2024030002
引用本文: 郜文哲, 韩笑, 魏海滨, 路正朕, 张利, 李晓峰. 激光粉末床熔融成形金刚石增强铝基复合材料[J]. 粉末冶金技术, 2024, 42(2): 122-127. doi: 10.19591/j.cnki.cn11-1974/tf.2024030002
GAO Wenzhe, HAN Xiao, WEI Haibin, LU Zhengzhen, ZHANG Li, LI Xiaofeng. Diamond reinforced aluminum matrix composites by laser powder bed fusion[J]. Powder Metallurgy Technology, 2024, 42(2): 122-127. doi: 10.19591/j.cnki.cn11-1974/tf.2024030002
Citation: GAO Wenzhe, HAN Xiao, WEI Haibin, LU Zhengzhen, ZHANG Li, LI Xiaofeng. Diamond reinforced aluminum matrix composites by laser powder bed fusion[J]. Powder Metallurgy Technology, 2024, 42(2): 122-127. doi: 10.19591/j.cnki.cn11-1974/tf.2024030002

激光粉末床熔融成形金刚石增强铝基复合材料

doi: 10.19591/j.cnki.cn11-1974/tf.2024030002
基金项目: 国家自然科学基金资助项目(52375393,52071299);山西省科技创新人才团队资助项目(202304051001029);山西省科技成果转化引导专项资助项目(202204021301048);山西省重点研发计划资助项目(2210300058MZ,202202150401020)
详细信息
    通讯作者:

    E-mail: lxf@nuc.edu.cn

  • 中图分类号: TF124;TG146.2

Diamond reinforced aluminum matrix composites by laser powder bed fusion

More Information
  • 摘要: 添加质量分数3%金刚石颗粒并利用激光粉末床熔融技术制备6061铝基复合材料。采用光学显微镜、扫描电子显微镜、X射线衍射仪、电子密度计、电子式万能试验机对3%金刚石/6061铝基复合材料的微观组织、相对密度和拉伸性能进行了表征与分析。结果表明:金刚石与Al基体反应生成了针状Al4C3相,并沉积在α-Al基体上,导致晶界位错密度增加,强度提高,抗失效能力增强。金刚石的添加促使6061铝基体中热裂纹消失,但存在孔洞缺陷。较低的扫描速度增加了激光光斑与被加工材料接触的时间,导致金刚石颗粒部分石墨化,铝基体部分蒸发,进而形成内部缺陷,降低了复合材料的相对密度(97%)。金刚石的加入显著提高了激光粉末床熔融技术成形金刚石/6061铝基复合材料的抗拉强度,当激光功率为350 W、扫描速度为800 mm·s−1时,复合材料的极限抗拉强度达到最大值244.2 MPa,屈服强度211.6 MPa,伸长率2.1%。
  • 图  1  3%金刚石/6061铝基复合材料粉末形貌

    Figure  1.  Morphology of the 3%diamond/6061 aluminum matrix mixture powders

    图  2  不同扫描速度下LPBF成形3%金刚石/6061铝基复合材料相对密度随激光功率变化曲线

    Figure  2.  Relative density of the 3%diamond/6061 aluminum matrix composites formed by LPBF with the different laser powers at the different scanning speeds

    图  3  激光功率350 W、扫描速度800 mm·s−1条件下6061铝合金(a)和3%金刚石/6061铝基复合材料(b)显微组织

    Figure  3.  Microstructure of the 6061 aluminum alloys (a) and the 3%diamond/6061 aluminum matrix composites (b) under the laser power of 350 W and scanning speed of 800 mm·s−1

    图  4  3%金刚石/6061铝基复合材料能谱面扫结果

    Figure  4.  EDS surface scan of the 3%diamond/6061 aluminum matrix composites

    图  5  3%金刚石/6061铝基复合材料能谱点扫位置

    Figure  5.  EDS spot scan position of the 3%diamond/6061 aluminum matrix composites

    图  6  LPBF成形6061铝合金及3%金刚石/6061铝基复合材料X射线衍射图

    Figure  6.  XRD patterns of the 6061 aluminum alloys and 3%diamond/6061 aluminum matrix composites formed by LPBF

    图  7  不同成形工艺拉伸曲线:(a)6061铝合金;(b)3%金刚石/6061铝基复合材料

    Figure  7.  Tensile curves for the different forming processes: (a) 6061 aluminum alloys; (b) 3%diamond/6061 aluminum matrix composites

    图  8  6061铝合金和3%金刚石/6061铝基复合材料的极限抗拉强度和能量密度的关系

    Figure  8.  Relationship between the ultimate tensile strength and energy density of the 6061 aluminum alloys and the 3%diamond/6061 aluminum matrix composites

    表  1  6061粉末化学成分(质量分数)

    Table  1.   Chemical composition of the 6061 powders %

    Si Fe Cu Mn Mg Zn Cr Ti Al
    0.4500 0.0560 0.2200 0.0018 0.9500 0.0046 0.1900 0.0012 余量
    下载: 导出CSV

    表  2  激光粉末床熔融成形工艺参数

    Table  2.   Process parameters of laser powder bed fusions

    编号 激光功率,
    P / W
    扫描速度,
    v / (mm·s−1)
    能量密度,
    EDV / (J·mm−3)
    1 250 800 148.81
    2 250 1000 119.05
    3 250 1200 99.21
    4 300 800 178.57
    5 300 1000 142.86
    6 300 1200 119.05
    7 350 800 208.33
    8 350 1000 166.67
    9 350 1200 138.89
    下载: 导出CSV

    表  3  3%金刚石/6061铝基复合材料能谱点扫结果

    Table  3.   EDS data of the 3%diamond/6061 aluminum matrix composites

    位置点1点2点3点4
    质量分数 / %原子数分数 / %质量分数 / %原子数分数 / %质量分数 / %原子数分数 / %质量分数 / %原子数分数 / %
    Al58.338.995.593.076.960.790.181.4
    C40.360.32.55.521.738.58.717.6
    Si0.50.30.60.60.40.30.50.4
    Cu0.40.10.50.20.20.10.10.3
    Mg0.40.30.60.60.40.30.40.4
    Fe0.10.10.30.10.30.10.20.1
    下载: 导出CSV
  • [1] Fan H J, Hu J Y, Wang Y, et al. A review of laser additive manufacturing (LAM) aluminum alloys: Methods, microstructures and mechanical properties. Opt Laser Technol, 2024, 175: 110722 doi: 10.1016/j.optlastec.2024.110722
    [2] Wu L Z, Wen Y J, Zhang B C, et al. Research status of selective laser melting aluminum alloys. Power Metall Technol, 2021, 39(6): 549

    吴灵芝, 温耀杰, 张百成, 等. 选区激光熔化铝合金制备研究现状. 粉末冶金技术, 2021, 39(6): 549
    [3] Chen Y, Xiao C W, Zhu S, et al. Microstructure characterization and mechanical properties of crack-free Al−Cu−Mg−Y alloy fabricated by laser powder bed fusion. Addit Manuf, 2022, 58: 103006
    [4] Rometsch P A, Zhu Y M, Wu X H, et al. Review of high-strength aluminium alloys for additive manufacturing by laser powder bed fusion. Mater Des, 2022, 219: 110779 doi: 10.1016/j.matdes.2022.110779
    [5] Mair P, Kaserer L, Braun J, et al. Dependence of mechanical properties and microstructure on solidification onset temperature for Al2024–CaB6 alloys processed using laser powder bed fusion. Mater Sci Eng A, 2022, 833: 142552 doi: 10.1016/j.msea.2021.142552
    [6] Li M, Yao S, Wang J J, et al. Role of Er on the densification, microstructure and mechanical properties of 7075 aluminium alloys manufactured by laser powder bed fusion. J Mater Res Technol, 2022, 20: 2021 doi: 10.1016/j.jmrt.2022.08.004
    [7] Otani Y, Sasaki S. Effects of the addition of silicon to 7075 aluminum alloy on microstructure, mechanical properties, and selective laser melting processability. Mater Sci Eng A, 2020, 777: 139079 doi: 10.1016/j.msea.2020.139079
    [8] Uddin S Z, Murr L E, Terrazas C A, et al. Processing and characterization of crack-free aluminum 6061 using high-temperature heating in laser powder bed fusion additive manufacturing. Addit Manuf, 2018, 22: 405
    [9] Opprecht M, Garandet J P, Roux G, et al. An understanding of duplex microstructures encountered during high strength aluminium alloy laser beam melting processing. Acta Mater, 2021, 215: 117024 doi: 10.1016/j.actamat.2021.117024
    [10] Mehta A, Zhou L, Huynh T, et al. Additive manufacturing and mechanical properties of the dense and crack free Zr-modified aluminum alloy 6061 fabricated by the laser-powder bed fusion. Addit Manuf, 2021, 41: 101966
    [11] Yang H, Sha J W, Zhao D D, et al. Defects control of aluminum alloys and their composites fabricated via laser powder bed fusion: A review. J Mater Process Technol, 2023, 319: 118064 doi: 10.1016/j.jmatprotec.2023.118064
    [12] Liu J W, Kou S. Effect of diffusion on susceptibility to cracking during solidification. Acta Mater, 2015, 100: 359 doi: 10.1016/j.actamat.2015.08.064
    [13] Tan Z Q, Li Z Q, Fan G, et al. Fabrication of diamond/aluminum composites by vacuum hot pressing: Process optimization and thermal properties. Compos Eng, 2013, 47: 173 doi: 10.1016/j.compositesb.2012.11.014
    [14] Zhou H Y, Ran M, Li Y Q, et al. Improvement of thermal conductivity of diamond/Al composites by optimization of liquid-solid separation process. J Mater Process Technol, 2021, 297: 117267 doi: 10.1016/j.jmatprotec.2021.117267
    [15] Ma Y, Ji G, Li X P, et al. On the study of tailorable interface structure in a diamond/Al12Si composite processed by selective laser melting. Materialia, 2019, 5: 100242 doi: 10.1016/j.mtla.2019.100242
    [16] Tan Z Q, Ji G, Addad A, et al. Tailoring interfacial bonding states of highly thermal performance diamond/Al composites: Spark plasma sintering vs. vacuum hot pressing. Composites Part A, 2016, 91: 9
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  22
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-05
  • 刊出日期:  2024-04-28

目录

    /

    返回文章
    返回