发动机用石墨烯增强TC11合金放电等离子烧结制备参数优化及力学性能研究

吴小俊

吴小俊. 发动机用石墨烯增强TC11合金放电等离子烧结制备参数优化及力学性能研究[J]. 粉末冶金技术, 2022, 40(4): 291-295. doi: 10.19591/j.cnki.cn11-1974/tf.2020110010
引用本文: 吴小俊. 发动机用石墨烯增强TC11合金放电等离子烧结制备参数优化及力学性能研究[J]. 粉末冶金技术, 2022, 40(4): 291-295. doi: 10.19591/j.cnki.cn11-1974/tf.2020110010
WU Xiao-jun. Preparation parameter optimization and mechanical properties of the graphene-reinforced TC11 titanium alloys prepared by spark plasma sintering used for engine[J]. Powder Metallurgy Technology, 2022, 40(4): 291-295. doi: 10.19591/j.cnki.cn11-1974/tf.2020110010
Citation: WU Xiao-jun. Preparation parameter optimization and mechanical properties of the graphene-reinforced TC11 titanium alloys prepared by spark plasma sintering used for engine[J]. Powder Metallurgy Technology, 2022, 40(4): 291-295. doi: 10.19591/j.cnki.cn11-1974/tf.2020110010

发动机用石墨烯增强TC11合金放电等离子烧结制备参数优化及力学性能研究

doi: 10.19591/j.cnki.cn11-1974/tf.2020110010
详细信息
    通讯作者:

    E-mail: yybizwu@163.com

  • 中图分类号: TF124

Preparation parameter optimization and mechanical properties of the graphene-reinforced TC11 titanium alloys prepared by spark plasma sintering used for engine

More Information
  • 摘要: 通过添加石墨烯提高了放电等离子烧结(spark plasma sintering, SPS)制备发动机用耐高温TC11合金的力学性能,研究了不同烧结参数下TC11合金的密度,并观察了合金显微组织,分析了合金力学性能的影响因素。研究结果表明:随着烧结温度增加,试样密度先增加后平稳;提高烧结压力后,试样密度发生了略微上升。随着烧结温度的上升,更多α相转变成了高温β相,形成了相对稳定的β相比例。随着烧结时间的增加,合金室温压缩强度表现为升高的趋势。提高烧结压力后,TC11合金获得了更高的室温与高温力学强度。通过实验最终确定烧结时间5 min、温度900 ℃与压力50 MPa时制备的TC11合金具有最优力学性能。
  • 图  1  不同烧结温度下TC11合金X射线衍射图谱

    Figure  1.  XRD spectra of the TC11 alloys at the different sintering temperatures

    图  2  不同烧结温度下TC11合金显微形貌:(a)700 ℃;(b)800 ℃;(c)900 ℃;(d)1000 ℃

    Figure  2.  SEM images of the TC11 alloys at different sintering temperatures: (a) 700 ℃; (b) 800 ℃; (c) 900 ℃; (d) 1000 ℃

    图  3  不同烧结时间和压力下TC11合金X射线衍射图谱

    Figure  3.  XRD spectra of the TC11 alloys under the different sintering times and pressures

    图  4  不同烧结时间和压力下TC11合金显微形貌:(a)3 min + 50 MPa;(b)5 min + 50 MPa;(c)3 min + 20 MPa;(d)3 min + 35 MPa

    Figure  4.  SEM images of the TC11 alloys under the different sintering times and pressures: (a) 3 min + 50 MPa; (b) 5 min + 50 MPa; (c) 3 min + 20 MPa; (d) 3 min + 35 MPa

    表  1  不同烧结参数下TC11合金密度

    Table  1.   Density of the TC11 alloys under the different sintering parameters

    编号烧结参数密度 / (g·cm‒3)
    温度 / ℃时间 / min压力 / MPa
    17007504.17
    28007504.34
    39007504.44
    410007504.43
    59003504.43
    69005504.44
    79005204.36
    89005354.41
    下载: 导出CSV

    表  2  不同烧结温度下TC11合金的力学性能

    Table  2.   Mechanical properties of the TC11 alloys under the different temperatures

    烧结温度 / ℃室温力学性能 550 ℃力学性能
    屈服强度 / MPa抗压强度 / MPa伸长率 / %屈服强度 / MPa抗压强度 / MPa伸长率 / %
    7001042±11.41452±21.021.1±0.6 504±5.6952±12.224.8±1.0
    8001112±19.31513±26.026.2±1.1522±7.9985±31.731.6±1.8
    9001156±20.21552±24.318.4±0.9530±16.31002±32.827.3±1.1
    10001048±22.31502±21.518.8±0.7518±31.1922±30.124.8±0.6
    下载: 导出CSV

    表  3  不同烧结时间和烧结压力下TC11合金的力学性能

    Table  3.   Mechanical properties of the TC11 alloys under the different sintering times and sintering pressures

    烧结时间+烧结压力室温力学性能 550 ℃力学性能
    屈服强度 / MPa抗压强度 / MPa伸长率 / %屈服强度 / MPa抗压强度 / MPa伸长率 / %
    3 min + 50 MPa936.4±11.41536.2±27.020.9±0.6 570.2±5.6971.3±12.225.2±1.0
    5 min + 50 MPa942.2±19.31586.4±40.025.9±1.1544.1±7.91004.6±31.732.4±1.8
    5 min + 20 MPa933.6±11.21413.0±27.417.9±0.9539.6±20.6900.8±35.924.0±0.9
    5 min + 35 MPa934.3±9.01449.1±21.518.9±0.7554.1±31.1928.0±30.125.7±0.8
    下载: 导出CSV
  • [1] Khanna N, Davim J P. Design-of-experiments application in machining titanium alloys for aerospace structural components. Measurement, 2015, 61: 280 doi: 10.1016/j.measurement.2014.10.059
    [2] Shi J L, Pei J, Zhang B P, et al. Research progress of thermoelectric materials prepared by mechanical alloying combined with discharge plasma sintering. Powder Metall Technol, 2021, 39(1): 4

    石建磊, 裴俊, 张波萍, 等. 机械合金化结合放电等离子烧结技术制备热电材料的研究进展. 粉末冶金技术, 2021, 39(1): 4
    [3] Singh P, Pungotra H, Kalsi N S. On the characteristics of titanium alloys for the aircraft applications. Mater Today, 2017, 4(8): 8971
    [4] Gao A, Hang R Q, Bai L, et al. Electrochemical surface engineering of titanium-based alloys for biomedical application. Electrochim Acta, 2018, 271: 699 doi: 10.1016/j.electacta.2018.03.180
    [5] Zhang Z H, Liu Z F, Lu J F, et al. The sintering mechanism in spark plasma sintering—Proof of the occurrence of spark discharge. Scr Mater, 2014, 81: 56 doi: 10.1016/j.scriptamat.2014.03.011
    [6] Cheng C, Chen Z Y, Qin X S, et al. Microstructure, texture and mechanical property of TA32 titanium alloy thick plate. Acta Metall Sinica, 2020, 56(2): 193 doi: 10.11900/0412.1961.2019.00226

    程超, 陈志勇, 秦绪山, 等. TA32钛合金厚板的微观组织、织构与力学性能. 金属学报, 2020, 56(2): 193 doi: 10.11900/0412.1961.2019.00226
    [7] Xu Q D, Li K J, Cai Z P, et al. Effect of pulsed magnetic field on the microstructure of TC4 tiatanium alloy and its mechanism. Acta Metall Sinica, 2019, 55(4): 489 doi: 10.11900/0412.1961.2018.00257

    许擎栋, 李克俭, 蔡志鹏, 等. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究. 金属学报, 2019, 55(4): 489 doi: 10.11900/0412.1961.2018.00257
    [8] Zhu S, Yang H, Guo L G, et al. Effect of cooling rate on microstructure evolution during α/β heat treatment of TC11 titanium alloy. Mater Charact, 2012, 70: 101 doi: 10.1016/j.matchar.2012.05.009
    [9] Sun Y, Luo G Q, Zhang J, et al. Phase transition, microstructure and mechanical properties of TC4 titanium alloy prepared by plasma activated sintering. J Alloys Compd, 2018, 741: 918 doi: 10.1016/j.jallcom.2018.01.197
    [10] Lϋtjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Mater Sci Eng A, 1998, 243(1-2): 32 doi: 10.1016/S0921-5093(97)00778-8
    [11] Sun Q J, Xie X. Microstructure and mechanical properties of TA15 alloy after thermo-mechanical processing. Mater Sci Eng A, 2018, 724: 493 doi: 10.1016/j.msea.2018.03.109
    [12] Kinloch I A, Suhr J, Lou J, et al. Composites with carbon nanotubes and graphene: An outlook. Science, 2018, 362: 547 doi: 10.1126/science.aat7439
    [13] Santosh M V, Suresh K R, Aithal S K. Mechanical characterization and microstructure analysis of Al C355.0 by sand casting, die casting and centrifugal casting techniques. Mater Today, 2017, 4(10): 10987
    [14] Hodbe G A, Shinde B R. Design and simulation of LM 25 sand casting for defect minimization. Mater Today, 2018, 5(2): 4489
    [15] Shen D N, Wang C N, Gao P, et al. Ultrafine grained W‒Ti alloys prepared by spark plasma sintering. Powder Metall Technol, 2021, 39(2): 165

    沈丹妮, 王超宁, 高鹏, 等. 放电等离子烧结制备超细晶钨钛合金. 粉末冶金技术, 2021, 39(2): 165
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  773
  • HTML全文浏览量:  104
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-13
  • 刊出日期:  2022-08-12

目录

    /

    返回文章
    返回