W–Ti合金互扩散及β结构稳定性研究

王庆相 王君龙

王庆相, 王君龙. W–Ti合金互扩散及β结构稳定性研究[J]. 粉末冶金技术, 2018, 36(1): 3-8. doi: 10.19591/j.cnki.cn11-1974/tf.2018.01.001
引用本文: 王庆相, 王君龙. W–Ti合金互扩散及β结构稳定性研究[J]. 粉末冶金技术, 2018, 36(1): 3-8. doi: 10.19591/j.cnki.cn11-1974/tf.2018.01.001
WANG Qing-xiang, WANG Jun-long. Study on the interdiffusion of W–Ti alloy and β phase stability[J]. Powder Metallurgy Technology, 2018, 36(1): 3-8. doi: 10.19591/j.cnki.cn11-1974/tf.2018.01.001
Citation: WANG Qing-xiang, WANG Jun-long. Study on the interdiffusion of W–Ti alloy and β phase stability[J]. Powder Metallurgy Technology, 2018, 36(1): 3-8. doi: 10.19591/j.cnki.cn11-1974/tf.2018.01.001

W–Ti合金互扩散及β结构稳定性研究

doi: 10.19591/j.cnki.cn11-1974/tf.2018.01.001
基金项目: 

陕西省西部军民融合产业发展研究院专项基金资助项目 17JMR22

详细信息
    通讯作者:

    王庆相, E-mail: wangqx1981@163.com

  • 中图分类号: TG146.4

Study on the interdiffusion of W–Ti alloy and β phase stability

More Information
  • 摘要: 通过测量相同时间、不同温度下制备的W/Ti扩散偶成分和显微硬度,研究了W–Ti合金的扩散特性和机理,计算了W/Ti互扩散系数(单位:cm2·s-1),并利用MS软件对Ti原子数分数为12.5%~50%的W–Ti二元合金的能量、电子结构进行了理论计算。结果表明:W与Ti发生互扩散,其中W在Ti中的扩散速度远高于Ti在W中的扩散速度;在1100~1300℃时,W基固溶体中的互扩散系数公式为2.6×10-5exp(-385.3/kT),Ti基固溶体中的互扩散系数公式为4.1×10-2exp(-285.1/kT),其中,T为扩散温度,k为扩散距离;随着Ti原子数分数的升高,W–Ti合金的β结构稳定性降低。
  • 图  1  不同烧结温度W/Ti扩散偶的金相显微组织:(a)1100℃;(b)1300℃

    Figure  1.  OM images of W/Ti diffusion couples at different temperatures: (a) 1100℃; (b) 1300℃

    图  2  1300℃时W/Ti扩散偶的显微组织形貌(a)和线扫描(b)分析

    Figure  2.  Microstructures (a) and line scanning analysis (b) of W/Tidiffusion couple at 1300℃

    图  3  1300℃时W/Ti扩散偶界面元素原子数成分分布曲线

    Figure  3.  Composition distributions of W/Tidiffusion couple interface at 1300℃

    图  4  1300℃时W/Ti扩散偶界面显微硬度分布曲线

    Figure  4.  Microhardness distribution of W/Tidiffusion couple interface at 1300℃

    图  5  W/Ti扩散偶界面元素成分测量与计算结果(1300℃,1h)

    Figure  5.  Measurement and calculation results of composition distribution in W/Tidiffusion couple interface at 1300℃ for 1h

    图  6  晶格常数与Ti原子数分数的关系

    Figure  6.  Relationship between lattice constants and Ticontent by atom

    图  7  内聚能与Ti原子数分数的关系

    Figure  7.  Relationship between Ecoh and Ticontent by atom

    图  8  W和W16–xTixx= 2, 4, 8)的态密度计算结果:(a)W;(b)W14Ti2;(c)W10Ti6;(d)W8Ti8

    Figure  8.  DOS calculation results of W and W16–xTix(x= 2, 4, 8): (a) W; (b) W14Ti2; (c) W10Ti6; (d) W8Ti8

    表  1  不同温度条件下W-Ti合金中不同区域的互扩散系数

    Table  1.   Interdiffusion coefficients of W-Tialloy in different areas at different temperatures

    温度/℃ Ti基固溶体互扩散系数/(cm2·s−1) W基固溶体互扩散系数/(cm2·s−1)
    1100 5.1×10−11 9.2×10−14
    1200 3.2×10−10 9.5×10−13
    1300 1.4×10−9 7.5×10−12
    下载: 导出CSV

    表  2  Ti和W基固溶体中的扩散激活能和互扩散系数公式

    Table  2.   Activation energy and interdiffusion coefficient equation of Ti/W solid solution

    相名称 预扩散系数/ (cm2·s−1) 扩散激活能/ (kJ·mol−1) 互扩散方程/ (cm2·s−1)
    Ti 4.1×10−2 285.1 4.1×10−2exp(−285.1/kT)
    W 2.3×10−5 385.3 2.6×10−5exp(−385.3/kT)
    注:k—扩散距离,T—扩散温度。
    下载: 导出CSV
  • [1] Berger S. Elastic and plastic strains in Al/TiW/Si contacts during thermal cycles. Mater Sci Eng A, 2000, 288(2): 164 doi: 10.1016/S0921-5093(00)00863-7
    [2] Dirks A G, Wolters R A M, Nellissen A J M. On the microstructure-property relationship of W–Ti–(N) diffusion barriers. Thin Solid Films, 1990, 193-194(1): 201 http://www.sciencedirect.com/science/article/pii/S0040609005800288
    [3] Bhagat S, hanh, Alfrod T L. Tungsten-titanium diffusion barriers for silver metallization. Thin Solid Films, 2006, 515(4): 1998 doi: 10.1016/j.tsf.2006.03.049
    [4] Kecskesa L J, hall I W. Microstructural effects inhot-explosively-consolidated W–Tialloys. J Mater Process Technol, 1999, 94(2-3): 247 doi: 10.1016/S0924-0136(99)00077-1
    [5] Liu C, Kong X J, Wu S W, et al. Research progress on metal injection molding of titanium and titanium alloys. Powder Metall Technol, 2017, 35(2): 150 doi: 10.3969/j.issn.1001-3784.2017.02.012

    刘超, 孔祥吉, 吴胜文, 等. 钛及钛合金金属粉末注射成形技术的研究进展. 粉末冶金技术, 2017, 35(2): 150 doi: 10.3969/j.issn.1001-3784.2017.02.012
    [6] Liang B Y, Wang Y Z, Zhang W X, et al. Effect of diamond size and content on the phase composition and morphology of Ti2AlC bonded diamond obtained by self-propagationhigh temperature sintering. Powder Metall Technol, 2016, 34(1): 35 doi: 10.3969/j.issn.1001-3784.2016.01.007

    梁宝岩, 王艳芝, 张旺玺, 等. 金刚石含量与粒度对自蔓延高温烧结钛铝碳结合剂/金刚石复合材料组织与形貌的影响. 粉末冶金技术, 2016, 34(1): 35 doi: 10.3969/j.issn.1001-3784.2016.01.007
    [7] Zhengh B, Ye X N, Zhang X F, et al. Microstructure transformation, grain growth and precipitated phase of 12% Cr ferritic stainless steel in coarse grain zone. Trans China Weld Inst, 2011, 32(6): 37 https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201106011.htm

    郑淮北, 叶晓宁, 张雪峰, 等. 12%Cr铁素体不锈钢粗晶区组织转变和晶粒长大及析出相分析. 焊接学报, 2011, 32(6): 37 https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201106011.htm
    [8] Peng X N, Guoh Z, Qin C, et al. Isothermal beta grain growth kinetics of TC4–DT titanium alloy under two different prior processing conditions: deformed vs. undeformed. Rare Met Mater Eng, 2014, 43(8): 1855 doi: 10.1016/S1875-5372(14)60145-4
    [9] Han J, Sheng G M, Qin B, et al. Present status of research in diffusion bonding of titanium alloy to stainless steel. Mater Mech Eng, 2007, 31(12): 1 doi: 10.3969/j.issn.1000-3738.2007.12.001

    韩靖, 盛光敏, 秦斌, 等. 钛合金与不锈钢扩散连接研究现状. 机械工程材料, 2007, 31(12): 1 doi: 10.3969/j.issn.1000-3738.2007.12.001
    [10] Ma Y J, Liu J R, Lei J F, et al. β-grain growth and influence of its grain size on damage-tolerance property in titanium alloy. Rare Met Mater Eng, 2009, 38(6): 976 doi: 10.3321/j.issn:1002-185X.2009.06.009

    马英杰, 刘建荣, 雷家峰, 等. 钛合金β晶粒生长规律及晶粒尺寸对损伤容限性能的影响. 稀有金属材料与工程, 2009, 38(6): 976 doi: 10.3321/j.issn:1002-185X.2009.06.009
    [11] Massalski T B, Murray J L, Bennett Lh, et al. Binary Alloy Phase Diagrams. New York: American Society for Metals, 1990
    [12] Pan J S, Tian M B, Tong J M. Fundamental of Materials Science. Beijing: Tsinghua Unversity Press, 2011

    潘金生, 田民波, 仝健民. 材料科学基础. 北京: 清华大学出版社, 2011
    [13] Chen S, hu C Y, Yang J M, et al. Study on interdiffusion of iridium/rhenium. Rare Met Mater Eng, 2006, 35(1): 17 doi: 10.3321/j.issn:1002-185X.2006.01.005

    陈松, 胡昌义, 杨家明, 等. Ir/Re互扩散研究. 稀有金属材料与工程, 2006, 35(1): 17 doi: 10.3321/j.issn:1002-185X.2006.01.005
    [14] Ma Q, Liu Xh, Chen Z L, et al. The research of Nb/Tidiffusion. Rare Met Mater Eng, 2007, 36(10): 1745 doi: 10.3321/j.issn:1002-185x.2007.10.011

    马权, 刘向宏, 陈自力, 等. Nb/Ti扩散研究. 稀有金属材料与工程, 2007, 36 (10): 1745 doi: 10.3321/j.issn:1002-185x.2007.10.011
    [15] Yao Q, Xingh, Guo W Y, et al. β phase stability and elastic property of Ti–Nb alloys. Chin J Nonferrous Met, 2008, 18(1): 126 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ200801023.htm

    姚强, 邢辉, 郭文渊, 等. Ti–Nb合金β结构稳定性和弹性性质. 中国有色金属学报, 2008, 18(1): 126 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ200801023.htm
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  352
  • HTML全文浏览量:  53
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-17
  • 刊出日期:  2018-02-27

目录

    /

    返回文章
    返回