原料配比对放电等离子烧结钼碳化物的影响

王大鹏 穆云超 成晓哲 张五奇

王大鹏, 穆云超, 成晓哲, 张五奇. 原料配比对放电等离子烧结钼碳化物的影响[J]. 粉末冶金技术, 2018, 36(1): 31-35. doi: 10.19591/j.cnki.cn11-1974/tf.2018.01.006
引用本文: 王大鹏, 穆云超, 成晓哲, 张五奇. 原料配比对放电等离子烧结钼碳化物的影响[J]. 粉末冶金技术, 2018, 36(1): 31-35. doi: 10.19591/j.cnki.cn11-1974/tf.2018.01.006
WANG Da-peng, MU Yun-chao, CHENG Xiao-zhe, ZHANG Wu-qi. Effects of raw material ratio on the properties of molybdenum carbide prepared by spark plasma sintering method[J]. Powder Metallurgy Technology, 2018, 36(1): 31-35. doi: 10.19591/j.cnki.cn11-1974/tf.2018.01.006
Citation: WANG Da-peng, MU Yun-chao, CHENG Xiao-zhe, ZHANG Wu-qi. Effects of raw material ratio on the properties of molybdenum carbide prepared by spark plasma sintering method[J]. Powder Metallurgy Technology, 2018, 36(1): 31-35. doi: 10.19591/j.cnki.cn11-1974/tf.2018.01.006

原料配比对放电等离子烧结钼碳化物的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2018.01.006
基金项目: 

河南省高等学校重点科研项目资助项目 18A430033

河南省科技开放合作项目资助项目 142106000051

详细信息
    通讯作者:

    穆云超, E-mail: yunchaomu@126.com

  • 中图分类号: TG135.5

Effects of raw material ratio on the properties of molybdenum carbide prepared by spark plasma sintering method

More Information
  • 摘要: 以Mo粉和C粉为原料,采用放电等离子烧结技术成功制备钼的碳化物烧结体,通过X-射线衍射仪(X-ray diffraction,XRD)、扫描电子显微镜(scanning electron microscopy,SEM)及显微硬度仪等测试分析手段,研究了原料配比对产物的物相组成、微观形貌、显微硬度和气孔率的影响。结果表明:当原料中Mo粉和C粉的摩尔比为2:1时,可制备出致密程度较高的Mo2C烧结体;当Mo粉和C粉的摩尔比为2:1.5时,能够促使Mo2C向MoC转变;增加原料中的C粉,会降低烧结体的显微硬度和气孔率。
  • 图  1  不同原料配比(Mo: C,摩尔比)烧结体的X-射线衍射图谱

    Figure  1.  XRD patterns of sintering body in different Mo/C mole ratio

    图  2  不同原料配比(Mo: C,摩尔比)烧结体的扫描电镜显微形貌:(a)2:1;(b)2:1.25;(c)2:1.5;(d)2:1.75;(e)1:1

    Figure  2.  SEM images of sintering body in different Mo/C mole ratio: (a) 2:1; (b) 2:1.25; (c) 2:1.5; (d) 2:1.75; (e) 1:1

    图  3  不同原料配比(Mo: C,摩尔比)烧结体的显微硬度和气孔率

    Figure  3.  Microhardness and porosity of sintering body in different Mo/C mole ratio

  • [1] Gong S W, Chen H K, Li W, et al. Synthesis of β-Mo2N0.78 hydrodesulfurization catalyst in mixtures of nitrogen and hydrogen. Appl Catal A, 2005, 279(1-2): 257
    [2] Sun D Y, Lin B Z, Xu B H, et al. Zr-intercalated molybdenum disulfide: preparation, characterization and catalytic activity in nitrobenzene hydrogenation. J Porous Mater, 2008, 15(3): 245
    [3] Ren J, Jin Y Z, Zhang Z Q, et al. Synthesis of Mo2C nanopowders by molten salt method. Powder Metall Technol, 2017, 35(1): 29

    任娇, 金永中, 张正权, 等. 熔盐合成法制备Mo2C纳米粉末的研究. 粉末冶金技术, 2017, 35(1): 29
    [4] Escandón L S, Ordóňez S, Vega A, et al. Sulphur poisoning of palladium catalysts used for methane combustion: Effect of the support. J Hazard Mater, 2008, 153(1-2): 742
    [5] Cao W C, An G, Liu G J. The properties, application and preparation methods of molybdenum carbide and molybdenum nitride. China Molybd Ind, 2006, 30(5): 45

    曹维成, 安耿, 刘高杰. 碳/氮化钼的性能、应用及制备. 中国钼业, 2006, 30(5): 45
    [6] Earnshaw A, Greenwood N N. Chemistry of the Elements. 2nd Ed. UK: Butterworth-Heinemann, 1997
    [7] Yang Z H, Cai P J, Shi L, et al. A facile preparation of nanocrystalline Mo2C from graphite or carbon nanotubes. J Solid State Chem, 2006, 179(1): 29
    [8] Zhang X, Li L P, Liang J. Research and development of molybdenum carbide catalyst. China Molybd Ind, 2010, 34(6): 26

    张新, 李来平, 梁静. 碳化钼催化剂的研究进展. 中国钼业, 2010, 34(6): 26
    [9] Osepchuk J M. A history of microwave heating applications. IEEE, 1984, 32(9): 1200
    [10] Rybakov K I, Semenov V E, Egorov S V, et al. Microwave heating of conductive powder materials. J Appl Phys, 2006, 99(2): 023506
    [11] Ham D J, Lee J S. Transition metal carbides and nitrides as electrode materials for low temperature fuel cells. Energies, 2009, 2(4): 873
    [12] Hojo J, Tajika M, Kato A. Molybdenum carbide powders obtained from the vapor phase reaction of the MoCl4–CH4–H2 system. J Less-Common Met, 1979, 66(2): 151
    [13] Zhu X K, Lin Q S, Chen T L, et al. Research and progress in mechanical alloying. Powder Metall Technol, 1999, 17(4): 291

    朱心昆, 林秋实, 陈铁力, 等. 机械合金化的研究及进展. 粉末冶金技术, 1999, 17(4): 291
    [14] Lin W S. Metallic phase transformation in mechanical alloying. Powder Metall Technol, 2001, 19(3): 178

    林文松. 机械合金化过程中的金属相变. 粉末冶金技术, 2001, 19(3): 178
    [15] Omori M. Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater Sci Eng, 2000, 287(2): 183
    [16] Yao R, Zhang X, Wang S W, et al. The properties of Mn3O4 synthesized by spark plasma sintering. Powder Metall Technol, 2016, 34(6): 434

    姚蓉, 张鑫, 王松伟, 等. 放电等离子烧结工艺对Mn3O4性能的影响. 粉末冶金技术, 2016, 34(6): 434
    [17] Yamamoto S, Tanamachi N, Horie S, et al. Fabrication of soft magnetic core using spark plasma sintering. J Jpn Soc Powder Powder Metall, 2000, 47(7): 757
    [18] Zhang J X, Liu K G, Zhou M L. Development and application of spark plasma sintering. Powder Metall Techonol, 2002, 20(3): 129

    张久兴, 刘科高, 周美玲. 放电等离子烧结技术的发展和应用. 粉末冶金技术, 2002, 20(3): 129
    [19] Sakamoto T. Sintering of molybdenum powder compacts by spark plasma sintering. Met Powder Rep, 1999, 54(2): 36
    [20] Lin WW, Song Y G. A comparative study on X-ray diffraction mineral quantitative analysis of two methods in sediments. J Earth Environ, 2017, 8(1): 78-87

    林伟伟, 宋友桂. 沉积物中X射线衍射物相定量分析中的两种方法对比研究. 地球环境学报, 2017, 8(1): 78
  • 加载中
图(3)
计量
  • 文章访问数:  167
  • HTML全文浏览量:  40
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-13
  • 刊出日期:  2018-02-27

目录

    /

    返回文章
    返回