气流粉碎/静电分散制备超微粉体失电规律研究

殷鹏飞 张蓉 邓玉 周林

殷鹏飞, 张蓉, 邓玉, 周林. 气流粉碎/静电分散制备超微粉体失电规律研究[J]. 粉末冶金技术, 2018, 36(1): 43-47. doi: 10.19591/j.cnki.cn11-1974/tf.2018.01.008
引用本文: 殷鹏飞, 张蓉, 邓玉, 周林. 气流粉碎/静电分散制备超微粉体失电规律研究[J]. 粉末冶金技术, 2018, 36(1): 43-47. doi: 10.19591/j.cnki.cn11-1974/tf.2018.01.008
YIN Peng-fei, ZHANG Rong, DENG Yu, ZHOU Lin. Investigation on the electric charge decay of micropowder prepared by jet milling/electrostatic dispersion[J]. Powder Metallurgy Technology, 2018, 36(1): 43-47. doi: 10.19591/j.cnki.cn11-1974/tf.2018.01.008
Citation: YIN Peng-fei, ZHANG Rong, DENG Yu, ZHOU Lin. Investigation on the electric charge decay of micropowder prepared by jet milling/electrostatic dispersion[J]. Powder Metallurgy Technology, 2018, 36(1): 43-47. doi: 10.19591/j.cnki.cn11-1974/tf.2018.01.008

气流粉碎/静电分散制备超微粉体失电规律研究

doi: 10.19591/j.cnki.cn11-1974/tf.2018.01.008
基金项目: 

国家自然科学基金资助项目 51074129

详细信息
    通讯作者:

    张蓉, E-mail: XBWL01@mail.nwpu.edu.cn

  • 中图分类号: TF123.7

Investigation on the electric charge decay of micropowder prepared by jet milling/electrostatic dispersion

More Information
  • 摘要: 采用气流粉碎与静电分散复合法(气流粉碎/静电分散)制备得到的超微粉体具有较好的分散性,然而粉体颗粒所带电量在空气中会逐渐发生消散流失,导致分散效果逐渐减弱甚至消失。本文以CaCO3粉体和钡铁氧体粉体为研究对象,设计了一种新型非接触测量方案来实现荷电粒子电量衰减特性的连续测量,对两种荷电粉体颗粒在空气中的失电过程进行了实验研究。结果表明,荷电粉体颗粒荷质比在空气中的消散呈指数关系衰减;原始荷电电压越高,荷质比的初始衰减速率越大,且在整个衰减过程中相同静置时间下的荷质比数值亦越大;此外,粉体颗粒对所荷电量的贮存能力与颗粒粒径及其相对介电常数有关,颗粒粒径愈小,相对介电常数愈大,则其电荷贮存性能愈佳。
  • 图  1  非接触测量装置示意图

    Figure  1.  Schematic diagram of non-contact measuring apparatus

    图  2  不同荷电电压下CaCO3粉体的荷质比衰减曲线

    Figure  2.  Decay curves of the charge to mass ratio of CaCO3 powder under different voltages

    图  3  不同荷电电压下钡铁氧体的荷质比衰减曲线

    Figure  3.  Decay curves of the charge to mass ratio of barium ferrite powder under different voltages

    图  4  20 kV荷电电压下CaCO3粉体和钡铁氧体的荷质比衰减曲线

    Figure  4.  Decay curve comparison of the charge to mass ratio between CaCO3 powder and barium ferrite powder at 20 kV

    图  5  40 kV荷电电压下CaCO3粉体和钡铁氧体的荷质比衰减曲线

    Figure  5.  Decay curve comparison of the charge to mass ratio between CaCO3 powder and barium ferrite powder at 40 kV

  • [1] Sun W M, Yin B B, Shi G M. Preparation and electrical/magnetic conductivity study of Fe composite nanopowders coated by Ag. Powder Metall Technol, 2017, 35(2): 113 doi: 10.3969/j.issn.1001-3784.2017.02.007

    孙维民, 尹宾宾, 史桂梅. Ag包覆Fe复合纳米粉体的制备及导电导磁性能研究. 粉末冶金技术, 2017, 35(2): 113 doi: 10.3969/j.issn.1001-3784.2017.02.007
    [2] Zhang Y F, Ji Z, Liu G M, et al. Manufacturing process and properties of Al2O3 dispersion strengthened copper-based composite with high electrical conductivity. Powder Metall Technol, 2016, 34(5): 345 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201605005.htm

    张一帆, 纪箴, 刘贵民, 等. Al2O3弥散增强Cu基高导电率复合材料的制备及性能研究. 粉末冶金技术, 2016, 34(5): 345 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201605005.htm
    [3] Li X L, Zhang S J, Gong S, et al. A study on the electrochemical hydrogen storage characteristics of La0.75Mg0.25Ni3.5-xMnx (x=0-0.4) alloys prepared by powder metallurgy. Powder Metal Technol, 2016, 34(2): 90 doi: 10.3969/j.issn.1001-3784.2016.02.002

    李小雷, 张世杰, 巩帅, 等. 粉末冶金法制备La0.75Mg0.25Ni3.5-xMnx(x=0-0.4)合金及其电化学贮氢性能研究. 粉末冶金技术, 2016, 34(2): 90 doi: 10.3969/j.issn.1001-3784.2016.02.002
    [4] Chen J, Lin C G, Hu X S, et al. Strength of aggregates in ultrafine WC powder. Powder Metall Ind, 2008, 18(5): 25 doi: 10.3969/j.issn.1006-6543.2008.05.006

    陈杰, 林晨光, 胡学晟, 等. 超细WC粉末中团聚体的强度. 粉末冶金工业, 2008, 18(5): 25 doi: 10.3969/j.issn.1006-6543.2008.05.006
    [5] Tan J, Zhou Z J, Qu D D, et al. Current status of the ultra-fine grained tungsten and its alloys. Powder Metall Ind, 2012, 22(3): 56 doi: 10.3969/j.issn.1006-6543.2012.03.010

    谈军, 周张健, 屈丹丹, 等. 超细晶钨及其复合材料的研究现状. 粉末冶金工业, 2012, 22(3): 56 doi: 10.3969/j.issn.1006-6543.2012.03.010
    [6] Lu S C. Powder Processing Technology. Beijing: China Light Industry Press, 1999

    卢寿慈. 粉体加工技术. 北京: 中国轻工业出版社, 1999
    [7] Nykamp G, Carstensen U, Müller B W. Jet milling ― a new technique for microparticle preparation. Int J Pharm, 2002, 242(1-2): 79 doi: 10.1016/S0378-5173(02)00150-3
    [8] Midoux N, Hošek P, Pailleres L, et al. Micronization of pharmaceutical substances in a spiral jet mill. Powder Technol, 1999, 104(2): 113 doi: 10.1016/S0032-5910(99)00052-2
    [9] Ma F F, Wang Y P. New progress of research on the technology of ultrafine airflow smashing. Hunan Metall, 2006, 34(6): 42 doi: 10.3969/j.issn.1005-6084.2006.06.011

    马飞飞, 王雅萍. 超细气流粉碎技术的研究新进展. 湖南冶金, 2006, 34(6): 42 doi: 10.3969/j.issn.1005-6084.2006.06.011
    [10] Kravchenko V P, Baglyuk G A, Trotsan A I. Effectiveness of jet milling for producing superfine powders from blast-furnace slag. Powder Metall Metl Ceram, 2017, 55(11-12): 745 doi: 10.1007/s11106-017-9863-y
    [11] Yashima S, Kanda Y, Sano S. Relationships between particle size and fracture energy or impact velocity required to fracture as estimated from single particle crushing. Powder Technol, 1987, 51(3): 277 doi: 10.1016/0032-5910(87)80030-X
    [12] Kanda Y, Sano S, Yashima S. A consideration of grinding limit based on fracture mechanics. Powder Technol, 1986, 48(3): 263 doi: 10.1016/0032-5910(86)80051-1
    [13] Kanda Y, Abe Y, Hosoya T, et al. A consideration of ultrafine grinding based on experimental result of single particle crushing. Powder Technol, 1989, 58(2): 137 doi: 10.1016/0032-5910(89)80026-9
    [14] Palaniandy S, Azizli K A M. Mechanochemical effects on talc during fine grinding process in a jet mill. Int J Miner Process, 2009, 92(1-2): 22 doi: 10.1016/j.minpro.2009.02.008
    [15] Shaibani M E, Ghambari M. Characterization and comparison of gray cast iron powder produced by target jet milling and high energy ball milling of machining scraps. Powder Technol, 2011, 212(1): 278 doi: 10.1016/j.powtec.2011.06.002
    [16] Wang L D, Xiao Z G. Effect of jet-milling on structure and physicochemical properties of maize starch. Trans Chin Soc Agric Eng, 2016, 32(24): 276 doi: 10.11975/j.issn.1002-6819.2016.24.037

    王立东, 肖志刚. 气流粉碎对玉米淀粉结构及理化性质的影响. 农业工程学报, 2016, 32(24): 276 doi: 10.11975/j.issn.1002-6819.2016.24.037
    [17] Li F S, Song H C, Liu H Y, et al. The electrostatic problems in crushing with jet mill. Chem Ind Eng Prog, 1995(2): 15 doi: 10.3321/j.issn:1000-6613.1995.02.003

    李凤生, 宋洪昌, 刘洪英, 等. 气流粉碎过程中的静电问题. 化工进展, 1995(2): 15 doi: 10.3321/j.issn:1000-6613.1995.02.003
    [18] Giry K, Péan J M, Giraud L, et al. Drug/lactose co-micronization by jet milling to improve aerosolization properties of a powder for inhalation. Int J Pharm, 2006, 321(1-2): 162 doi: 10.1016/j.ijpharm.2006.05.009
    [19] Zeng G Y, Nie F D, Liu X D, et al. Preparation of ultra-fine calcium silicate using airflow-smash. Mater Sci Eng, 2001, 19(4): 80 doi: 10.3969/j.issn.1673-2812.2001.04.018

    曾贵玉, 聂福德, 刘晓东, 等. 气流粉碎法制备超细硅酸钙粒子的研究. 材料科学与工程, 2001, 19(4): 80 doi: 10.3969/j.issn.1673-2812.2001.04.018
    [20] Ren J, Lu S C, Shen J, et al. Anti-aggregation electrostatic dispersion of fine particles. Chin Sci Bull, 2000, 45(21): 2289 doi: 10.3321/j.issn:0023-074X.2000.21.008

    任俊, 卢寿慈, 沈健, 等. 超细颗粒的静电抗团聚分散. 科学通报, 2000, 45(21): 2289 doi: 10.3321/j.issn:0023-074X.2000.21.008
    [21] Ren J, Lu S C, Shen J, et al. Electrostatic dispersion of fine particles in the air. Powder Technol, 2001, 120(3): 187 doi: 10.1016/S0032-5910(01)00269-8
    [22] Ren J, Lu S C, Shen J, et al. Research on the composite dispersion of ultra fine powder in the air. Mater Chem Phys, 2001, 69(1-3): 204 doi: 10.1016/S0254-0584(00)00396-5
    [23] Xu Z, Lu S C. Effect of charge on superfine powder dispersion by electrostatic. China Powder Sci Technol, 2004, 10(Suppl 1): 227 https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKL200400001055.htm

    徐政, 卢寿慈. 荷电量对超细粉体静电分散及其分散效果影响. 中国粉体技术, 2004, 10(增刊1): 227 https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKL200400001055.htm
    [24] Li G C, Ji S F. Electrostatic dispersion research on superfine coal powder. China Powder Sci Technol, 2007, 13(1): 23 doi: 10.3969/j.issn.1008-5548.2007.01.006

    李桂春, 纪守峰. 超细煤粉的静电分散研究. 中国粉体技术, 2007, 13(1): 23 doi: 10.3969/j.issn.1008-5548.2007.01.006
    [25] Kittipoomwong P, Maeda M, Gotoh K, et al. Electric charging characteristic of a mixer-type power disperser. Adv Powder Technol, 1998, 9(4): 317 doi: 10.1016/S0921-8831(08)60563-4
    [26] Masuda H. Dry dispersion of fine particles in gaseous phase. Adv Powder Technol, 2009, 20(2): 113 doi: 10.1016/j.apt.2009.02.001
  • 加载中
图(5)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  91
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-26
  • 刊出日期:  2018-02-27

目录

    /

    返回文章
    返回