低温微正压碳热氮化法制备微纳米Mo(C,N)粉末

戴胜 邓莹 倪海涛 陈慧 胡凯

戴胜, 邓莹, 倪海涛, 陈慧, 胡凯. 低温微正压碳热氮化法制备微纳米Mo(C,N)粉末[J]. 粉末冶金技术, 2018, 36(1): 61-66, 72. doi: 10.19591/j.cnki.cn11-1974/tf.2018.01.011
引用本文: 戴胜, 邓莹, 倪海涛, 陈慧, 胡凯. 低温微正压碳热氮化法制备微纳米Mo(C,N)粉末[J]. 粉末冶金技术, 2018, 36(1): 61-66, 72. doi: 10.19591/j.cnki.cn11-1974/tf.2018.01.011
DAI Sheng, DENG Ying, NI Hai-tao, CHEN Hui, HU Kai. Preparation of micro-nano Mo(C, N) powders by low temperature carbothermal and micro-positive pressure of nitrogen[J]. Powder Metallurgy Technology, 2018, 36(1): 61-66, 72. doi: 10.19591/j.cnki.cn11-1974/tf.2018.01.011
Citation: DAI Sheng, DENG Ying, NI Hai-tao, CHEN Hui, HU Kai. Preparation of micro-nano Mo(C, N) powders by low temperature carbothermal and micro-positive pressure of nitrogen[J]. Powder Metallurgy Technology, 2018, 36(1): 61-66, 72. doi: 10.19591/j.cnki.cn11-1974/tf.2018.01.011

低温微正压碳热氮化法制备微纳米Mo(C,N)粉末

doi: 10.19591/j.cnki.cn11-1974/tf.2018.01.011
基金项目: 

重庆市基础科学与前沿技术研究专项重点资助项目 cstc2017jcyjBX0051

重庆市永川区共性关键技术创新资助项目 Ycstc, 2016ab3001

详细信息
    通讯作者:

    邓莹, E-mail: 397194810@qq.com

  • 中图分类号: TF123

Preparation of micro-nano Mo(C, N) powders by low temperature carbothermal and micro-positive pressure of nitrogen

More Information
  • 摘要: 金属Mo的碳氮化物对改善金属基复合材料的结构性能起到重要作用,而Mo(C,N)固溶体综合了金属及碳氮化物的性能,其改善复合材料结构的效果优于单纯的Mo2C或者MoN粉末。本研究采用机械合金化技术和微正压碳热氮化法,低温下制备微纳米Mo(C,N)固溶体粉末。利用热重分析-示差扫描量热法(thermogravimetric analysis-differential scanning calorimetry,TG-DSC)、X射线衍射仪(X-ray diffraction,XRD)、扫描电子显微镜(scanning electron microscope,SEM)分析考察机械力及氮化条件对粉体结构及粒度的影响。结果表明:MoO2粉末和碳粉经9 h高能球磨后,机械力足够使粉末细化,同时能够增加界面能和缺陷,以提供MoC-N化学吸附向微纳米Mo(C,N)固溶体粉末转变所需的激活能,并借此改变Mo原子表面电子的不饱和性,结合微正压N2气气氛,促使混合粉末在碳化阶段Mo与N有效键合;最终,在N2气压力0.2 MPa、850 ℃下制备出了Mo(C,N)微纳米类球形粉未;碳氮化温度低,有效地降低了能耗,节约了成本,有重要的工业应用前景。
  • 图  1  钼酸铵热分解工艺参数曲线:(a)加热;(b)冷却

    Figure  1.  Decomposition of ammonium molybdate: (a) heating period; (b) cooling period

    图  2  碳热氮化工艺参数曲线:(a)加热;(b)冷却

    Figure  2.  Carbothermal nitrogenization: (a) heating period; (b) cooling period

    图  3  钼酸铵热重-示差扫描量热分析曲线

    Figure  3.  TG-DSC curve of ammonium molybdate

    图  4  不同球磨时间钼酸铵的扫描电子显微组织形貌:(a)0 h;(b)5 h;(c)10 h;(d)12 h

    Figure  4.  SEM images of ammonium molybdate under different milling time: (a) 0 h; (b) 5 h; (c) 10 h; (d) 12 h

    图  5  球磨10 h不同温度下钼酸铵烧结产物的X射线衍射图谱(a)、钼酸铵在550 ℃烧结后扫描电子显微组织形貌(b)及对应的能谱图(c)

    Figure  5.  XRD patterns of ammonium molybdate (milling for 10 h) sintered at different temperatures (a), SEM image of ammonium molybdate (milling for 10 h) sintered at 550 ℃ (b), and the corresponding EDS analyse (c)

    图  6  氧化钼与碳粉在不同球磨时间后的扫描电子显微组织形貌:(a)3 h;(b)6 h;(c)9 h

    Figure  6.  SEM images of MoO2 and C under different milling times: (a) 3 h; (b) 6 h; (c) 9 h

    图  7  氧化钼与碳粉高能球磨9 h后不同氮气压力下900 ℃碳热反应的X射线衍射图谱

    Figure  7.  XRD patterns of carbothermal reaction of MoO2 and C (milling for 9 h) at 900 ℃under different nitrogen pressure

    图  8  不同球磨时间氧化钼和C粉在不同碳热温度下反应的X射线衍射图谱(氮气压力0.2 MPa)

    Figure  8.  XRD patterns of carbothermal reaction of MoO2 and C in the nitrogen pressure of 0.2 MPa at different temperatures for different milling times

    图  9  球磨9 h、850 ℃碳热反应制备所得Mo(C,N)扫描电子显微组织形貌(a)及对应的能谱图(b)

    Figure  9.  SEM (a) and EDS (b) images of carbothermal reaction product (Mo(C, N)) at 850 ℃ (milling for 9 h)

  • [1] Barsoum M W, Yaroschuk G, Tyagi S. Fabrication and characterization of M2SnC (M = Ti, Zr, Hf and Nb). Scripta Mater, 1997, 37(10): 1583 doi: 10.1016/S1359-6462(97)00288-1
    [2] Li Y, Liu N. Microstructure and mechanical properties of fine-grained Ti(C, N)-Co cermets. Trans Mater Heat Treat, 2008, 29(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL200801001.htm

    李燕, 刘宁. 细晶粒TiCN-Co金属陶瓷的显微结构与力学性能. 材料热处理学报, 2008, 29(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL200801001.htm
    [3] Xiao G T, Liu Y, Ye J W, et al. The influence of different content of (W, Ta) C composite carbide on microstructure and properties of WC-10Co cemented carbide. Powder Metall Technol, 2013, 31(5): 355 doi: 10.3969/j.issn.1001-3784.2013.05.007

    肖广涛, 刘颖, 叶金文, 等. (W, Ta) C复合碳化物含量对WC-10Co硬质合金显微结构和力学性能的影响. 粉末冶金技术, 2013, 31(5): 355 doi: 10.3969/j.issn.1001-3784.2013.05.007
    [4] Li S B, Bei G P, Zhai H X, et al. Synthesis of Ti2SnC from Ti/Sn/TiC powder mixtures by pressureless sintering technique. Mater Lett, 2006, 60(29-30): 3530 doi: 10.1016/j.matlet.2006.03.045
    [5] Dong D, Wang C Y. Research progress on preparation technology of molybdenum alloy. Powder Metall Technol, 2017, 35(4): 304 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201704011.htm

    董帝, 王承阳. 钼合金制备工艺的研究进展. 粉末冶金技术, 2017, 35(4): 304 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201704011.htm
    [6] Zheng Y, You M, Xiong W H, et al. Valence-electron structure and properties of main phase in Ti(C, N)-based cermets. Mater Chem Phys, 2003, 82(3): 877 doi: 10.1016/j.matchemphys.2003.07.008
    [7] Meng F A, Liang B Y, Wang M Z. Investigation of formation mechanism of Ti3SiC2 by self-propagating high-temperature synthesis. Int J Refract Met Hard Mater, 2013, 41: 152 doi: 10.1016/j.ijrmhm.2013.03.005
    [8] Toth L E. Transition Metal Carbides and Nitrides. New York : Academic Press, 1971
    [9] Xiang J Y, Liu S C, Hu W T, et al. Mechanochemically activated synthesis of zirconium carbide nanoparticles at room temperature: A simple route to prepare nanoparticles of transition metal carbides. J Eur Ceram Soc, 2011, 31(8): 1491 doi: 10.1016/j.jeurceramsoc.2011.01.022
    [10] Benjamin J S. Dispersion strengthened superalloys by mechanical alloying. Metall Trans A, 1970, 1(10): 2943 doi: 10.1007/BF03037835
    [11] Zhang B. The Research of Mechanical Alloying Method on Preparing Metal Carbides[Dissertation]. Hangzhou: Zhejiang University, 2005

    张斌. 机械合金化方法制备碳化物的研究[学位论文]. 杭州: 浙江大学, 2005
    [12] Deng Y, Jiang X Q, Zhang Y H, et al. The effect of Co particle structures on the mechanical properties and microstructure of TiCN-based cermets. Mater Sci Eng A, 2016, 675: 164 doi: 10.1016/j.msea.2016.08.050
    [13] Berger L M, Grunerb W, Langholf E, et al. On the mechanism of carbothermal reduction processes of TiO2 and ZrO2. Int J Refract Met Hard Mater, 1999, 17(1-3): 235 doi: 10.1016/S0263-4368(98)00077-8
    [14] Jiang Z T, Liu Y, Chen Q W, et al. Reaction process of synthesizing vanadium carbide powder by vanadium pentoxide carbothermal reduction. Powder Metall Technol, 2012, 30(1): 40 doi: 10.3969/j.issn.1001-3784.2012.01.008

    姜中涛, 刘颖, 陈巧旺, 等. V2O5碳热还原合成碳化钒粉末的反应过程. 粉末冶金技术, 2012, 30(1): 40 doi: 10.3969/j.issn.1001-3784.2012.01.008
    [15] Urakaev F K, Boldyrev V V. Mechanism and kinetics of mechanochemical processes in comminuting devices: 2. Applications of the theory. Experiment. Powder Technol, 2000, 107(3): 197 doi: 10.1016/S0032-5910(99)00200-4
  • 加载中
图(9)
计量
  • 文章访问数:  191
  • HTML全文浏览量:  87
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-07
  • 刊出日期:  2018-02-27

目录

    /

    返回文章
    返回