锰方硼石结构与性能的研究进展

柏慧凝 纪箴 曹林 秦恬 贾成厂 郝舒畅

柏慧凝, 纪箴, 曹林, 秦恬, 贾成厂, 郝舒畅. 锰方硼石结构与性能的研究进展[J]. 粉末冶金技术, 2018, 36(1): 73-78. doi: 10.19591/j.cnki.cn11-1974/tf.2018.01.013
引用本文: 柏慧凝, 纪箴, 曹林, 秦恬, 贾成厂, 郝舒畅. 锰方硼石结构与性能的研究进展[J]. 粉末冶金技术, 2018, 36(1): 73-78. doi: 10.19591/j.cnki.cn11-1974/tf.2018.01.013
BAI Hui-ning, JI Zhen, CAO Lin, QIN Tian, JIA Cheng-chang, HAO Shu-chang. Research progress on structure and properties of chambersite[J]. Powder Metallurgy Technology, 2018, 36(1): 73-78. doi: 10.19591/j.cnki.cn11-1974/tf.2018.01.013
Citation: BAI Hui-ning, JI Zhen, CAO Lin, QIN Tian, JIA Cheng-chang, HAO Shu-chang. Research progress on structure and properties of chambersite[J]. Powder Metallurgy Technology, 2018, 36(1): 73-78. doi: 10.19591/j.cnki.cn11-1974/tf.2018.01.013

锰方硼石结构与性能的研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2018.01.013
基金项目: 

国家重点基础研究发展规划(973计划)资助项目 2014GB120000

国家自然科学基金资助项目 51471023

详细信息
    通讯作者:

    纪箴, E-mail: jizhen@mater.ustb.edu.cn

  • 中图分类号: TG142.71

Research progress on structure and properties of chambersite

More Information
  • 摘要: 锰方硼石(Mn3B7O13Cl)是一种应用前景巨大的锰氯硼酸盐矿物,我国是世界上目前唯一拥有锰方硼石矿床的国家,开发利用天然锰方硼石及人工合成纳米锰方硼石,并对其性能展开研究具有重要的理论和实际意义。本文首次对锰方硼石的显微结构、光致发光性能、电磁性能和摩擦磨损性能的研究进展进行概述,为我国进一步开发应用锰方硼石提供理论基础。
  • 图  1  锰方硼石的差热分析曲线

    Figure  1.  Different thermal analysis curve of natural chambersite

    图  2  纳米锰方硼石晶体的X射线衍射谱图

    Figure  2.  XRD patterns of Mn3B7O13Cl crystals

    图  3  合成锰方硼石的透射电子显微组织形貌

    Figure  3.  TEM images of Mn3B7O13Cl nanoparticles

    图  4  合成锰方硼石的高分辨像(a)、计算相(b)和衍射谱(c)

    Figure  4.  High resolution electron microscopy images (a), calculated images (b), and diffraction patterns (c) of synthetic chambersite

    图  5  合成锰方硼石的计算相(a)、模拟图(b)和分子骨架图(c)

    Figure  5.  Calculated images (a), simulated images (b), and molecular skeleton diagram of synthetic chambersite

    图  6  合成锰方硼石中Mn2+在不同激发波长下的发射光谱

    Figure  6.  Emission spectra of Mn2+ in synthetic chambersite at different excitation wavelengths

    图  7  纳米锰方硼石的介电常数(a)和介质损耗(tanδ)(b)随频率的变化

    Figure  7.  Dielectric constant (a) and dielectric loss (tanδ) (b) of Mn3B7O13Cl in different frequency

    图  8  样品摩擦系数比较

    Figure  8.  Comparison of friction coefficient (FC)

    图  9  样品磨损率和显微硬度比较

    Figure  9.  Wear rate and microhardness of samples

  • [1] Вeлов В Ф. Study on the chambersite Mn3B7O13Cl with nucleon γ ray resonance absorption. Eds. by Mao J M. Geol Geochem, 1980(9): 72

    别洛夫В Ф. 用原子核γ射线共振吸收法研究铁电体方硼石族Mn3B7O13Cl. 毛俊明, 译. 地质地球化学, 1980(9): 72
    [2] Xiao C D, Zhang J, Zhang B H, et al. Chambersite deposit in Jixian, Tianjin. Geol Survey Res, 2007, 30(3): 186 doi: 10.3969/j.issn.1672-4135.2007.03.005

    肖成东, 张静, 张宝华, 等. 天津蓟县锰方硼石矿床. 地质调查与研究, 2007, 30(3): 186 doi: 10.3969/j.issn.1672-4135.2007.03.005
    [3] Zeng Y S, Synthesis of chambersite and its geochemical implication. Acta Geol Sin, 1983(4): 401 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198304007.htm

    曾贻善. 锰方硼石的合成及其地球化学意义. 地质学报, 1983(4): 401 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198304007.htm
    [4] Xiong S, Liang D, Cao L, et al. Microstructure and luminescence characteristics of self-doped nano-Mn3B7O13Cl crystal. Mater Lett, 2016, 178: 87 doi: 10.1016/j.matlet.2016.04.196
    [5] Tomita A, Sato T, Tanaka K, et al. Luminescence channels of manganese-doped spinel. J Lumin, 2004, 109(1): 19 doi: 10.1016/j.jlumin.2003.12.049
    [6] Taghavinia N, Makino H, Yao T. Enhancement of Mn luminescence in ZnS: Mn multi-quantum-well structures. Appl Phys Lett, 2003, 83(22): 4616 doi: 10.1063/1.1630376
    [7] Jiang D X, Cao L X, Su G, et al. Luminescence enhancement of Mn doped ZnS nanocrystals passivated with zinc hydroxide. Appl Surf Sci, 2007, 253(24): 9330 doi: 10.1016/j.apsusc.2007.05.067
    [8] García J A, Remón A, Piqueras J. Influence of Bi and Mn on the green luminescence of ZnO ceramics. J Appl Phys, 1987, 62(7): 3058 doi: 10.1063/1.339347
    [9] Gao W R, Wang X M, Xu W Q, et al. Luminescent composite polymer fibers: in situ synthesis of silver nanoclusters in electrospun polymer fibers and application. Mater Sci Eng C, 2014, 42: 333 doi: 10.1016/j.msec.2014.05.020
    [10] Yuan J P, Guo W W, Wang E K. Oligonucleotide stabilized silver nanoclusters as fluorescence probe for drug-DNA interaction investigation. Anal Chim Acta, 2011, 706(2): 338 doi: 10.1016/j.aca.2011.08.043
    [11] Tian Y, Cao Y Y, Pang F, et al. Ag nanoparticles supported on N-doped graphene hybrids for catalytic reduction of 4-nitrophenol. Rsc Adv, 2014, 4(81): 43204 doi: 10.1039/C4RA06089J
    [12] Dhanya S, Saumya V, Rao T P. Synthesis of silver nanoclusters, characterization and application to trace level sensing of nitrate in aqueous media. Electrochim Acta, 2013, 102: 299 doi: 10.1016/j.electacta.2013.04.017
    [13] Luce J L, Schaffers K I, Keszler D A. Structure of the borate Li14Be5B(BO3)9. Inorg Chem, 1994, 33(11): 2453. doi: 10.1021/ic00089a023
    [14] Yu Z T, Borates and Uranyl Compounds with Optical and Photoelectrical Functions: Synthesis, Structures and Properties[Dissertation]. Changchun: Jilin University, 2004

    于振涛. 具光学及光电功能硼酸盐和铀酰化合物: 合成、结构及性能[学位论文]. 长春: 吉林大学, 2004
    [15] Liang D, Study on the Structure, Characteristic and Application of Chambersite and Tungsten-based Nanomaterial[Dissertation]. Beijing: University of Science and Technology Beijing, 2015

    梁栋. 锰方硼石和钨系纳米材料的结构、特性及应用研究[学位论文]. 北京: 北京科技大学, 2015
    [16] Wang F T, Wu Y C, Wang W F, et al. Microstructure and properties of Cu/SiO2 nanocomposites prepared by powder metallurgy technology. Nonferrous Met, 2007, 59(1): 38 https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS200701010.htm

    汪峰涛, 吴玉程, 王文芳, 等. 粉末冶金法制备Cu/SiO2纳米复合材料的组织与性能. 有色金属, 2007, 59(1): 38 https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS200701010.htm
    [17] Zhang Y, Zhou Y C, Ti3SiC2 dispersion-strengthened copper: a new dispersion-strengthened copper alloy. Acta Metall Sin, 2000, 36(6): 662 doi: 10.3321/j.issn:0412-1961.2000.06.023

    张毅, 周延春. Ti3SiC2弥散强化Cu: 一种新的弥散强化铜合金. 金属学报, 2000, 36(6): 662 doi: 10.3321/j.issn:0412-1961.2000.06.023
    [18] Gong L L, Cao L, Jia C C, et al. Effect of chambersite on friction and wear behavior of Cu-based friction material. Powder Metall Technol, 2013, 31(4): 279 doi: 10.3969/j.issn.1001-3784.2013.04.008

    龚立丽, 曹林, 贾成厂, 等. 锰方硼石对铜基摩擦材料摩擦性能的影响. 粉末冶金技术, 2013, 31(4): 279 doi: 10.3969/j.issn.1001-3784.2013.04.008
    [19] Shu X N, Cao L, Jia C C, Effect of nano-chambersite particle size distribution on copper-matrix friction materials. Mater Sci Eng Powder Metall, 2015, 20(2): 187 https://www.cnki.com.cn/Article/CJFDTOTAL-FMGC201502006.htm

    舒晓宁, 曹林, 贾成厂, 等. 纳米锰方硼石粒径分布对铜基摩擦材料的影响. 粉末冶金材料科学与工程, 2015, 20(2): 187 https://www.cnki.com.cn/Article/CJFDTOTAL-FMGC201502006.htm
  • 加载中
图(9)
计量
  • 文章访问数:  387
  • HTML全文浏览量:  105
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-20
  • 刊出日期:  2018-02-27

目录

    /

    返回文章
    返回