刹车速度对铜基粉末冶金摩擦材料性能的影响

刘联军 李利 吴其俊 车明超

刘联军, 李利, 吴其俊, 车明超. 刹车速度对铜基粉末冶金摩擦材料性能的影响[J]. 粉末冶金技术, 2018, 36(2): 83-88. doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.001
引用本文: 刘联军, 李利, 吴其俊, 车明超. 刹车速度对铜基粉末冶金摩擦材料性能的影响[J]. 粉末冶金技术, 2018, 36(2): 83-88. doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.001
LIU Lian-jun, LI Li, WU Qi-jun, CHE Ming-chao. Effects of braking velocity on friction properties of Cu-based powder metallurgy friction material[J]. Powder Metallurgy Technology, 2018, 36(2): 83-88. doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.001
Citation: LIU Lian-jun, LI Li, WU Qi-jun, CHE Ming-chao. Effects of braking velocity on friction properties of Cu-based powder metallurgy friction material[J]. Powder Metallurgy Technology, 2018, 36(2): 83-88. doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.001

刹车速度对铜基粉末冶金摩擦材料性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.001
详细信息
    通讯作者:

    刘联军, E-mail:413609033@qq.com

  • 中图分类号: TF124

Effects of braking velocity on friction properties of Cu-based powder metallurgy friction material

More Information
  • 摘要: 以粉末冶金法制备铜基粉末冶金摩擦材料, 采用洛氏硬度计和夏比冲击试验机对摩擦材料的力学性能进行表征, 利用MM-3000型摩擦磨损性能试验台研究了刹车速度对材料摩擦磨损性能的影响, 并借助电子扫描显微镜(scanning electron microscope, SEM)观察了摩擦材料的微观形貌。研究表明:铜基粉末冶金摩擦材料的摩擦磨损性能与刹车速度密切相关, 随着刹车速度的增大, 摩擦吸收功率近似线性增长, 而摩擦系数呈先增大后减小的趋势; 在高速刹车条件下, 铜基体自身发生软化会破坏摩擦材料表面形成的氧化膜, 降低了分子键的抗剪切强度, 从而增大了磨损量。
  • 图  1  摩擦材料试样表面扫描电子显微形貌

    Figure  1.  SEM images of sample surface of friction material

    图  2  铜基粉末冶金摩擦材料在55.56 m/s刹车速度下的摩擦数据曲线

    Figure  2.  Friction curves of Cu-based powder metallurgy material at the braking velocity of 55.56 m/s

    图  3  不同刹车速度下铜基粉末冶金摩擦材料的摩擦系数和摩擦吸收功率曲线(a)及线性磨损率和质量损失曲线(b)

    Figure  3.  Relationships of friction absorption power–friction coefficient (a) and linear wear rate–mass loss (b) with braking velocity of Cu-based powder metallurgy friction material

    图  4  铜基粉末冶金摩擦材料在不同刹车速度下的扫描电子显微形貌

    Figure  4.  SEM images of the Cu-based powder metallurgy friction material under the different velocity

    表  1  铜基粉末冶金摩擦材料化学成分(质量分数)

    Table  1.   Chemical composition of the copper-based powder metallurgy brake materials  %

    Cu Sn Fe SiO2 铬铁 其它
    60~70 1~6 6~15 5~10 2~5 10~20
    下载: 导出CSV

    表  2  摩擦磨损试验条件

    Table  2.   Condition of friction and wear test

    编号 惯量/ (kg·m2) 刹车压力/ MPa 刹车速度/ (m·s-1) 刹车转速/ (r·min-1) 次数
    1# 0.225 0.66 27.78 2652 10
    2# 33.33 3183 10
    3# 38.89 3714 10
    4# 44.44 4244 10
    5# 50.00 4775 10
    6# 55.56 5305 10
    下载: 导出CSV

    表  3  摩擦材料的力学性能

    Table  3.   Mechanical properties of friction material

    密度/ (g·cm-3) 洛氏硬度,HB 冲击韧性/ (J·cm-2)
    ≥5.72 ≥27 ≥33.5
    下载: 导出CSV
  • [1] Han F L, Ma F K, Cao Y J. Handbook of Powder Metallurgy Technology. Beijing: Chemical Industry Press, 2009

    韩凤麟, 马福康, 曹勇家.粉末冶金技术手册.北京: 化学工业出版社, 2009
    [2] Han F L. Powder Metallurgy Machine Parts. Beijing: China Machine Press, 2003

    韩风麟.粉末冶金机械零件.北京: 机械工业出版社, 2003
    [3] Sarmadi H, Kokabi A H, Seyed Reihani S M, et al. Friction and wear performance of copper–graphite surface composites fabricated by friction stir processing(FSP). Wear, 2013, 304(1-2): 1. doi: 10.1016/j.wear.2013.04.023
    [4] Eriksson M, Jacobson S. Tribological surface of organic brake pads. Tribol Int, 2000, 33(12): 817. doi: 10.1016/S0301-679X(00)00127-4
    [5] Miller R A. Thermal barrier coating for aircraft engines: history and directions. J Therm Spray Technol, 1997, 6(1): 35. doi: 10.1007/BF02646310
    ΦEДOPЧEHKOИM. Modem Friction Materials. Eds. by Xu R Z. Beijing: Metallurgical Industry Press, 1983

    (费多尔钦科.现代摩擦材料.徐润泽, 译.北京: 冶金工业出版社. 1983)
    [7] Yao P P, Xiong X, Huang B Y. Present situation and development of powder metallurgy airplane brake materials. Powder Metall Ind, 2000, 10(6): 34 doi: 10.3969/j.issn.1006-6543.2000.06.007

    姚萍屏, 熊翔, 黄伯云.粉末冶金航空刹车材料的应用现状与发展.粉末冶金工业, 2000, 10(6): 34 doi: 10.3969/j.issn.1006-6543.2000.06.007
    [8] Bai T Q, Wang X F, Zhong Z G, et al. Effects of friction components on friction properties of powder metallurgy friction materials. Mater Sci Eng Powder Metall, 2006, 11(6): 345 doi: 10.3969/j.issn.1673-0224.2006.06.006

    白同庆, 王秀飞, 钟志钢, 等.摩擦组元对粉末冶金摩擦材料摩擦性能的影响.粉末冶金材料科学与工程, 2006, 11(6): 345 doi: 10.3969/j.issn.1673-0224.2006.06.006
    [9] Wells T C. Friction materials in aerospace application. Met Powder Rep, 1992, 47(3): 62.
    [10] Zhou J C, Huang B Y. Progress in the research of train brake friction materials. Mater Sci Eng, 1999, 17(2): 98 https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX902.024.htm

    周继承, 黄伯云.列车制动摩擦材料研究进展.材料科学与工程, 1999, 17(2): 98 https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX902.024.htm
    [11] Wang Y. Study on Preparation and Properties of Powder Metallurgy Friction Materials for High Railway Braking[Dissertation]. Beijing: University of Science and Technology Beijing, 2015

    王晔.高铁制动用粉末冶金摩擦材料的制备及性能研究, 北京: 北京科技大学, 2015
    [12] Zhao X, Hao J J, Peng K, et al. Friction and wear behavior of Cu-based P/M friction materials with Cr–Fe as friction component. Mater Sci Eng Powder Metall, 2014, 19(6): 935 doi: 10.3969/j.issn.1673-0224.2014.06.015

    赵翔, 郝俊杰, 彭坤, 等. Cr–Fe为摩擦组元的铜基粉末冶金摩擦材料的摩擦磨损性能.粉末冶金材料科学与工程, 2014, 19(6): 935 doi: 10.3969/j.issn.1673-0224.2014.06.015
    [13] Berthier Y, Descartes S, Busquet M, et al. The role and effects of the third body in the wheel–rail interaction. Fatigue Fract Eng Mater Struct, 2004, 27(5): 423. doi: 10.1111/j.1460-2695.2004.00764.x
    [14] Kim S H, Lee S W. Wear and friction behavior of self-lubricating alumina–zirconia–fluoride composites fabricated by the PECS technique. Ceram Int, 2014, 40(1): 779. doi: 10.1016/j.ceramint.2013.06.068
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  62
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-23
  • 刊出日期:  2018-04-27

目录

    /

    返回文章
    返回