选择性激光熔化制备纯钨块体材料的研究

谢琰军 杨怀超 王学兵 赵琳 况春江 韩伟

谢琰军, 杨怀超, 王学兵, 赵琳, 况春江, 韩伟. 选择性激光熔化制备纯钨块体材料的研究[J]. 粉末冶金技术, 2018, 36(2): 89-95. doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.002
引用本文: 谢琰军, 杨怀超, 王学兵, 赵琳, 况春江, 韩伟. 选择性激光熔化制备纯钨块体材料的研究[J]. 粉末冶金技术, 2018, 36(2): 89-95. doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.002
XIE Yan-jun, YANG Huai-chao, WANG Xue-bing, ZHAO Lin, KUANG Chun-jiang, HAN Wei. Study on the tungsten bulk materials prepared by selective laser melting[J]. Powder Metallurgy Technology, 2018, 36(2): 89-95. doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.002
Citation: XIE Yan-jun, YANG Huai-chao, WANG Xue-bing, ZHAO Lin, KUANG Chun-jiang, HAN Wei. Study on the tungsten bulk materials prepared by selective laser melting[J]. Powder Metallurgy Technology, 2018, 36(2): 89-95. doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.002

选择性激光熔化制备纯钨块体材料的研究

doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.002
基金项目: 

国家重点研发计划资助项目 2016YFB1101102

国家重点研发计划资助项目 2016YFB1101100

国家国际科技合作专项资助项目 2015DFA50970

详细信息
    通讯作者:

    韩伟, E-mail: hanw@cisri.com.cn

  • 中图分类号: TG146.4

Study on the tungsten bulk materials prepared by selective laser melting

More Information
  • 摘要: 采用选择性激光熔化技术制备了纯钨块状样品, 研究了激光参数对所制备样品的表面形貌、内部晶粒组织和密度的影响。结果表明, 随着激光能量密度的增加, 样品表面变得光滑, 样品内部孔隙减少, 密度提高。采用功率300 W、扫描速率200 mm·s-1的激光扫描参数制备出了相对密度为97%的纯钨块状样品; 当激光功率提高至350 W时, 由于裂纹增多使样品密度下降; 随着激光输入能量密度的增加, 选择性激光熔化制备的样品内部晶粒方向性变得明显, 且晶粒尺寸增大; 采用扫描策略2 (激光功率200 W, 激光扫描速度200 mm·s-1)进行制备的样品内部孔隙较多, 且孔隙大多沿样品增材制造高度方向呈一条直线分布, 样品内部部分晶粒沿样品增材制造高度方向伸长。
  • 图  1  纯钨粉末形貌(a)及激光粒度分布结果(b)

    Figure  1.  Morphology of pure tungsten powder (a) and particle size distribution (b)

    图  2  激光扫描策略示意图

    Figure  2.  Schematic diagram of laser scanning strategy

    图  3  不同激光功率制备样品的上表面形貌(激光扫描速度为200 mm·s-1) : (a) 100 W; (b) 150 W; (c) 200 W; (d) 250 W; (e) 300 W; (f) 350 W

    Figure  3.  Top surface morphologies of samples prepared in different laser power at the laser scanning speed of 200 mm·s-1: (a) 100 W; (b) 150 W; (c) 200 W; (d) 250 W; (e) 300 W; (f) 350 W

    图  4  不同激光功率制备样品的内部组织分析结果(激光扫描速度为200 mm·s-1) : (a) 100 W; (b) 150 W; (c) 200 W; (d) 250 W; (e) 300 W; (f) 350 W

    Figure  4.  Microstructures of samples prepared in different laser power at the laser scanning speed of 200 mm·s-1: (a) 100 W; (b) 150 W; (c) 200 W; (d) 250 W; (e) 300 W; (f) 350 W

    图  5  激光扫描速度为200 mm·s-1条件下不同激光功率制备样品的密度

    Figure  5.  Densities of samples prepared in different laser power at the laser scanning speed of 200 mm·s-1

    图  6  不同激光扫描速度制备样品的上表面形貌和内部组织分析结果(激光功率为200 W) : (a), (c) 150 mm·s-1; (b), (d) 500 mm·s-1

    Figure  6.  Top surface morphology and microstructures of samples prepared by different laser scan speed at the laser power of 200 W: (a), (c) 150 mm·s-1; (b), (d) 500 mm·s-1

    图  7  不同激光扫速度制备样品的密度结果(激光功率为200 W)

    Figure  7.  Densities of samples prepared by different laser scan speed at the laser power of 200 W

    图  8  在相同激光参数条件下(200 W、200 mm·s-1), 不同激光扫描策略制备样品的晶粒组织分布: (a)扫描策略1; (b)扫描策略2

    Figure  8.  Microstructures of samples prepared by different scanning strategy at the same laser parameters (200 W, 200 mm·s-1) : (a) scanning strategy 1; (b) scanning strategy 2

    表  1  样品制备所采用的激光参数和扫描策略

    Table  1.   Laser parameters and scanning strategy of samples preparation

    样品编号 激光功率/ W 激光扫描速度/(mm·s-1) 扫描策略
    1# 100 200 1
    2# 150 200 1
    3# 200 200 1
    4# 250 200 1
    5# 300 200 1
    6# 350 200 1
    7# 200 150 1
    8# 200 175 1
    9# 200 225 1
    10# 200 250 1
    11# 200 300 1
    12# 200 350 1
    13# 200 400 1
    14# 200 500 1
    15# 200 200 2
    下载: 导出CSV
  • [1] Yap C Y, Chua C K, Dong Z L, et al. Review of selective laser melting: Materials and applications. Appl Phys Rev, 2015, 2(4): 518.
    [2] Yadroitsev I, Smurov I. Selective laser melting technology: From the single laser melted track stability to 3D parts of complex shape. Physics Procedia, 2010, 5: 551. doi: 10.1016/j.phpro.2010.08.083
    [3] Yadroitsev I, Thivillon L, Bertrand P, et al. Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder. Appl Surf Sci, 2007, 254(4): 980. doi: 10.1016/j.apsusc.2007.08.046
    [4] Strano G, Hao L, Everson R M, et al. Surface roughness analysis, modelling and prediction in selective laser melting. J Mater Process Technol, 2013, 213(4): 589. doi: 10.1016/j.jmatprotec.2012.11.011
    [5] Wong K V, Hernandez A. A review of additive manufacturing. ISRN Mech Eng, 2012(2): 30. http://www.oalib.com/paper/3087795
    [6] Louvis E, Fox P, Sutcliffe C J. Selective laser melting of aluminium components. J Mater Process Technol, 2011, 211(2): 275. doi: 10.1016/j.jmatprotec.2010.09.019
    [7] Zhang L C, Attar H. Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: A review. Adv Eng Mater, 2016, 18(4): 463. doi: 10.1002/adem.201500419
    [8] Kruth J P, Froyen L, Van Vaerenbergh J, et al. Selective laser melting of iron-based powder. J Mater Process Technol, 2004, 149(1-3): 616. doi: 10.1016/j.jmatprotec.2003.11.051
    [9] Jia W P, Tong H P, He W W, et al. Numerical microstructure simulation of laser rapid forming 316L stainless steel. Acta Metall Sin, 2010, 46(2): 135. http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSXB201002003.htm
    [10] Song K, Yu K, Lin X, et al. Microstructure and mechanical properties of heat treatment laser solid forming superalloy inconel 718. Acta Metall Sin, 2015, 51(8): 935. http://www.researchgate.net/publication/282929880_Microstructure_and_mechanical_properties_of_heat_treatment_laser_solid_forming_superalloy_Inconel_718
    [11] Wang H J, Cui Z W, Sun F, et al. Superalloy GH4169complicated components prepared by selective laser melting forming technique. Powder Metall Technol, 2016, 34(5): 368 doi: 10.3969/j.issn.1001-3784.2016.05.009

    王会杰, 崔照雯, 孙峰, 等.激光选区熔化成形技术制备高温合金GH4169复杂构件.粉末冶金技术, 2016, 34(5): 368 doi: 10.3969/j.issn.1001-3784.2016.05.009
    [12] Shishkovsky I, Yadroitsev I, Smurov I. Direct selective laser melting of nitinol powder. Physics Procedia, 2012, 39: 447. doi: 10.1016/j.phpro.2012.10.060
    [13] Yang G Y, Tang H P, Liu N, et al. Research progress in tungsten material fabricated by additive manufacturing. Hot Working Technol, 2016, 45(12): 16 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201624004.htm

    杨广宇, 汤慧萍, 刘楠, 等.增材制造技术制备钨材料研究进展.热加工工艺, 2016, 45(12): 16 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201624004.htm
    [14] Liu W S, Long L P, Ma Y Z. Research and preparation methods for high-purity tungsten. Powder Metall Technol, 2012, 30(3): 223 doi: 10.3969/j.issn.1001-3784.2012.03.012

    刘文胜, 龙路平, 马运柱.高纯钨研究现状及制备工艺方法综述.粉末冶金技术, 2010, 30(3): 223 doi: 10.3969/j.issn.1001-3784.2012.03.012
    [15] Lu L, Fuh J Y H, Wong Y S. Laser-Induced Materials and Processes for Rapid Prototyping. 1st Ed. New York: Springer Science Business Media, 2001.
    [16] Kolossov S, Boillat E, Glardon R, et al. 3D FE simulation for temperature evolution in the selective laser sintering process. Int J Mach Tools Manuf, 2012, 44(2-3): 117. http://www.sciencedirect.com/science/article/pii/S089069550300289X
    [17] Kou S. Welding Metallurgy, 2nd Ed. New Jersey: John Wiley & Sons, Inc., 2003.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  265
  • HTML全文浏览量:  44
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-10
  • 刊出日期:  2018-04-27

目录

    /

    返回文章
    返回