原位合成低含量SiC-Cu复合材料的导电和拉伸性能研究

范涛 丁翔祺 段春媚 武欣宇 张瑞敏 张巨成 唐伟忠 贾成厂

范涛, 丁翔祺, 段春媚, 武欣宇, 张瑞敏, 张巨成, 唐伟忠, 贾成厂. 原位合成低含量SiC-Cu复合材料的导电和拉伸性能研究[J]. 粉末冶金技术, 2018, 36(2): 96-99. doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.003
引用本文: 范涛, 丁翔祺, 段春媚, 武欣宇, 张瑞敏, 张巨成, 唐伟忠, 贾成厂. 原位合成低含量SiC-Cu复合材料的导电和拉伸性能研究[J]. 粉末冶金技术, 2018, 36(2): 96-99. doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.003
FAN Tao, DING Xiang-qi, DUAN Chun-mei, WU Xin-yu, ZHANG Rui-min, ZHANG Ju-cheng, TANG Wei-zhong, JIA Cheng-chang. Electrical conductivity and tensile properties of low content SiC-Cu composite by in situ synthesis[J]. Powder Metallurgy Technology, 2018, 36(2): 96-99. doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.003
Citation: FAN Tao, DING Xiang-qi, DUAN Chun-mei, WU Xin-yu, ZHANG Rui-min, ZHANG Ju-cheng, TANG Wei-zhong, JIA Cheng-chang. Electrical conductivity and tensile properties of low content SiC-Cu composite by in situ synthesis[J]. Powder Metallurgy Technology, 2018, 36(2): 96-99. doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.003

原位合成低含量SiC-Cu复合材料的导电和拉伸性能研究

doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.003
基金项目: 

国家重点基础研究发展规划 973计划

资助项目 N2014GB120000

国家自然科学基金资助项目 51471023

河北省大学生创新训练资助项目 CX2017008G

详细信息
    通讯作者:

    范涛, E-mail:huahangfantao@126.com

  • 中图分类号: TB333

Electrical conductivity and tensile properties of low content SiC-Cu composite by in situ synthesis

More Information
  • 摘要: 以铜粉、硅粉和石墨粉为原料, 采用高能球磨和等离子烧结技术, 原位合成了SiC–Cu复合材料。为研究SiC质量分数对复合材料导电和抗拉性能的影响, 利用场发射扫描电子显微镜(field-emission scanning electron microscope, FESEM)和能谱仪(energy disperse spectroscopy, EDS)表征SiC–Cu复合材料的相组成及断口显微组织形貌, 并对其电导率和抗拉强度进行测试。结果表明, 采用原位反应烧结可以成功制备出SiC–Cu复合材料; 当SiC理论质量分数低于1%时, SiC–Cu复合材料的电导率随SiC理论质量分数的增加逐渐下降, 电导率最大值为70.2%IACS; 同样条件下, SiC–Cu复合材料的抗拉强度呈先升高后降低的趋势, 在SiC理论质量分数为0.3%时, 抗拉强度有极值, 极值为207.4 MPa。
  • 图  1  SiC理论质量分数对Cu基复合材料电导率的影响

    Figure  1.  Effect of SiC theoretical mass fraction on the electrical conductivity of Cu composites

    图  2  SiC理论质量分数对Cu复合材料拉伸性能的影响

    Figure  2.  Effect of SiC theoretical mass fraction on the tensile strength of Cu composites

    图  3  含不同理论质量分数SiC增强相的SiC–Cu基复合材料拉伸断口扫描电子显微形貌与能谱分析: (a) 0.1%; (b) 0.3%; (c) 0.5%; (d) 0.7%; (e) 0.9%; (f)位置1处能谱

    Figure  3.  Tensile fracture morphology and EDS analysis of SiC–Cu composites in different SiC theoretical mass fraction: (a) 0.1%; (b) 0.3%; (c) 0.5%; (d) 0.7%; (e) 0.9%; (f) EDS at Position 1

    表  1  实验工艺参数

    Table  1.   Experimental process parameters

    SiC理论质量分数/ % 球磨转速/ (r·min-1) 球磨时间/ h 球料比 烧结温度/ ℃ 保温时间/ min 烧结压力/ MPa
    0.1、0.3、0.5、0.7、0.9 1100 4 3:1 850 5 40
    下载: 导出CSV
  • [1] Köck T, Brendel A, Bolt H. Interface reactions between silicon carbide and inter-layers in silicon carbide–copper metal-matrix composites. J Nucl Mater, 2007, 362(2-3): 197. doi: 10.1016/j.jnucmat.2007.01.022
    [2] Zhu J H, Liu L, Shen B, et al. Mechanical properties of Cu/SiCp composites fabricated by composite electroforming. Mater Lett, 2007, 61(13): 2804. doi: 10.1016/j.matlet.2006.10.051
    [3] Buytoz S, Dagdelen F, Islak S, et al. Effect of the TiC content on microstructure and thermal properties of Cu–TiC composites prepared by powder metallurgy. J Therm Anal Calorim, 2014, 117(3): 1277. doi: 10.1007/s10973-014-3900-6
    [4] Zhou D S, Qiu F, Jiang Q C. The nano-sized TiC particle reinforced Al–Cu matrix composite with superior tensile ductility. Mater Sci Eng A, 2015, 622: 189. doi: 10.1016/j.msea.2014.11.006
    [5] Mc Cormick P G. Application of mechanical alloying to chemical refining. Mater Trans JIM, 1995, 36(2): 161. doi: 10.2320/matertrans1989.36.161
    [6] Eddine W Z, Matteazzi P, Celis J P. Mechanical and tribological behavior of nanostructured copper–alumina cermets obtained by pulsed electric current sintering. Wear, 2013, 297(1-2): 762. doi: 10.1016/j.wear.2012.10.011
    [7] Zuhailawati H, Mahani Y. Effects of milling on hardness and electrical conductivity of in situ Cu–NbC composite produced by mechanical alloying. J Alloy Compd, 2009, 476(1-2): 142. doi: 10.1016/j.jallcom.2008.09.018
    [8] Fan T, Shen X, Wang H, et al. Effects of ball milling technology on microstructure and properties of SiCp/Cu composites prepared by in situ synthesis. Powder Metall Technol, 2016, 34(4): 317 doi: 10.3969/j.issn.1001-3784.2016.04.005

    范涛, 申询, 王虎, 等.球磨工艺对原位合成SiCp增强铜复合材料组织及性能的影响.粉末冶金技术, 2016, 34(4): 317 doi: 10.3969/j.issn.1001-3784.2016.04.005
    [9] Suryanarayana C, Nasser A A. Mechanically alloyed nanocomposites. Prog Mater Sci, 2013, 58(4): 383. doi: 10.1016/j.pmatsci.2012.10.001
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  328
  • HTML全文浏览量:  125
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-09
  • 刊出日期:  2018-04-27

目录

    /

    返回文章
    返回