TiC颗粒增强铜基复合材料的研究

李月英 倪慨宇 祝夫文

李月英, 倪慨宇, 祝夫文. TiC颗粒增强铜基复合材料的研究[J]. 粉末冶金技术, 2018, 36(2): 106-110. doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.005
引用本文: 李月英, 倪慨宇, 祝夫文. TiC颗粒增强铜基复合材料的研究[J]. 粉末冶金技术, 2018, 36(2): 106-110. doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.005
LI Yue-ying, NI Kai-yu, ZHU Fu-wen. Study of TiC particle-reinforced Cu matrix composites[J]. Powder Metallurgy Technology, 2018, 36(2): 106-110. doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.005
Citation: LI Yue-ying, NI Kai-yu, ZHU Fu-wen. Study of TiC particle-reinforced Cu matrix composites[J]. Powder Metallurgy Technology, 2018, 36(2): 106-110. doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.005

TiC颗粒增强铜基复合材料的研究

doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.005
基金项目: 

安徽省科技重大专项资助项目 16030901040

安徽工程大学引进人才科研启动基金资助项目 2012YQQ001

安徽工程大学“大学生创新创业训练计划”资助项目 201510363048

详细信息
    通讯作者:

    祝夫文, E-mail:zhuxi20003000@163.com

  • 中图分类号: TB333

Study of TiC particle-reinforced Cu matrix composites

More Information
  • 摘要: 以电解铜粉和TiC粉为原料, 采用粉末冶金法制备了增强体质量分数为5%、10%、15%、20%的TiC颗粒增强铜基复合材料。通过对显微组织的观察和对相对密度、硬度、电导率、磨损率、摩擦系数的测试, 研究了增强相质量分数、烧结温度对复合材料组织性能的影响。研究结果表明, TiC颗粒除少量团聚外均匀分布在基体上, 并与基体结合良好; 随烧结温度升高, 铜基复合材料的密度和硬度均有所增加; 随增强相质量分数的增加, 硬度增加, 相对密度和电导率均有所下降; 磨损率则表现为先降低后有所增加的趋势, 磨损率在TiC质量分数为15%时最低; 铜基复合材料的摩擦系数明显低于纯铜, 其磨损机制主要以磨粒磨损为主。
  • 图  1  添加不同质量分数TiC颗粒增强铜基复合材料的显微组织: (a) 5%; (b) 15%

    Figure  1.  Microstructures of TiC particle-reinforced Cu matrix composites in different contents of TiC particles by mass: (a) 5%; (b) 15%

    图  2  TiC质量分数为15%时不同烧结温度铜基复合材料的密度和硬度变化曲线

    Figure  2.  Density and hardness curves of Cu matrix composites reinforced by 15%TiC particles by mass at different sintering temperatures

    图  3  添加不同质量分数TiC的铜基复合材料的相对密度和硬度变化曲线

    Figure  3.  Relative density and hardness curves of Cu matrix composites reinforced by different contents of TiC particles by mass

    图  4  TiC质量分数对铜基复合材料电导率的影响

    Figure  4.  Effect of TiC particle contents by mass on electric conductivity of Cu matrix composites

    图  5  TiC质量分数对铜基复合材料磨损率(a)和摩擦系数(b)的影响

    Figure  5.  Effect of TiC particle contents by mass on wear rate (a) and friction coefficient (b) of Cu matrix composites

    图  6  纯铜(a)和添加质量分数5%TiC颗粒增强铜基复合材料(b)的磨损表面形貌

    Figure  6.  Wear surfaces of pure Cu (a) and Cu matrix composites reinforced by 5%TiC particles by mass (b)

  • [1] Fan T, Sun Y R, Tang Y, et al. The study on wear resistance of SiC particle reinforced Cu matrix composites prepared by reaction milling and hot pressed sintering. Powder Metall Technol, 2015, 33(6): 432 doi: 10.3969/j.issn.1001-3784.2015.06.006

    范涛, 孙艳荣, 唐怡, 等.反应球磨热压烧结制备SiCp/Cu复合材料的耐磨性能研究.粉末冶金技术, 2015, 33(6): 432 doi: 10.3969/j.issn.1001-3784.2015.06.006
    [2] Zhuang J, Liu Y B, Cao Z Y. Microstructure and wear resistance of Cu–TiC composites fabricated by mechanical alloying and spark plasma sintering. Adv Mater Res, 2011, 213: 524. doi: 10.4028/www.scientific.net/AMR.213.524
    [3] Yuan X Y, Liu G H, Jin H B, et al. In situ synthesis of TiC reinforced metal matrix composite(MMC)coating by self propagating high temperature synthesis(SHS). J Alloys Compd, 2011, 509(30): L301. doi: 10.1016/j.jallcom.2011.04.150
    [4] Li Y Y, Deng Q C, Shi P, et al. Dry sliding friction and wear behavior of surface hardened ferrous PM cam materials for automobile applications. Adv Mater Res, 2013, 652-654: 1399. doi: 10.4028/www.scientific.net/AMR.652-654.1399
    [5] Suryanarayana C, Al-Aqeeli N. Mechanically alloyed nanocomposites. Prog Mater Sci, 2013, 58(4): 383. doi: 10.1016/j.pmatsci.2012.10.001
    [6] Zhuang J, Liu Y B, Cao Z Y, et al. The influence of technological process on dry sliding wear behaviour of titanium carbide reinforcement copper matrix composites. Mater Trans, 2010, 51(12): 2311. doi: 10.2320/matertrans.M2010270
    [7] Yan J, Jiang K Y. Fabrication with powder metallurgy and study on properties of TiC/Cu composites. J Chongqing Univ Technol Nat Sci, 2012, 26(9): 42 https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL201209009.htm

    闫洁, 江开勇. TiC/Cu复合材料的PM法制备与性能.重庆理工大学学报(自然科学), 2012, 26(9): 42 https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL201209009.htm
    [8] Zhang Z W, Ji Z, Jia C C, et al. Preparation and properties of copper matrix composites reinforced by CNTs and Al2O3. Powder Metall Technol, 2016, 34(5): 356 doi: 10.3969/j.issn.1001-3784.2016.05.007

    张政委, 纪箴, 贾成厂, 等.碳纳米管和氧化铝颗粒协同增强铜基复合材料的制备与性能研究.粉末冶金技术, 2016, 34(5): 356 doi: 10.3969/j.issn.1001-3784.2016.05.007
    [9] Bai X, Jin Y X, Lu X, et al. Influence of reinforcement content on friction and wear properties of in-situ(TiC+Ti B)/Ti6Al4V composites. Trans Mater Heat Treat, 2017, 38(5): 30 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201705006.htm

    白雪, 金云学, 卢璇, 等.增强相含量对原位自生(TiC+TiB)/Ti6Al4V复合材料摩擦磨损性能的影响.材料热处理学报, 2017, 38(5): 30 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201705006.htm
    [10] Lin S J, Xiong W H, Wang S Y, et al. Effect of reinforcing particles content on properties of TiC/316L composites. Mater Sci Eng Powder Metall, 2013, 18(3): 373 doi: 10.3969/j.issn.1673-0224.2013.03.011

    蔺绍江, 熊惟皓, 王赛玉, 等.增强体含量对TiC/316L复合材料性能的影响.粉末冶金材料科学与工程, 2013, 18(3): 373 doi: 10.3969/j.issn.1673-0224.2013.03.011
    [11] Wang X L, Ding H M, Qi F G, et al. Mechanism of in situ synthesis of TiC in Cu melts and its microstructures. J Alloys Compd, 2017, 695: 3410. doi: 10.1016/j.jallcom.2016.12.018
    [12] Li M Q, Zhai H X, Huang Z Y, et al. Tensile behavior and strengthening mechanism in ultrafine TiC0.5 particle reinforced Cu–Al matrix composites. J Alloys Compd, 2015, 628: 186. doi: 10.1016/j.jallcom.2014.10.123
    [13] Li M Q, Zhai H X, Huang Z Y, et al. Microstructure and mechanical properties of TiC0.5 reinforced copper matrix composites. Mater Sci Eng A, 2013, 588: 335. doi: 10.1016/j.msea.2013.09.054
    [14] Gedam V, Pansari A, Sinha A K, et al. The effect of macroscopic polarization on intrinsic and extrinsic thermal condutivities of Al N. J Phys Chem Solids, 2015, 78: 59. doi: 10.1016/j.jpcs.2014.10.024
    [15] Eddine W Z, Matteazzi P, Celis J P. Mechanical and tribological behavior of nanostructured copper-alumina cermets obtained by pulsed electric current sintering. Wear, 2013, 297(1-2): 762. doi: 10.1016/j.wear.2012.10.011
  • 加载中
图(6)
计量
  • 文章访问数:  298
  • HTML全文浏览量:  128
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-18
  • 刊出日期:  2018-04-27

目录

    /

    返回文章
    返回