冲击加载条件下金属粉末的动态力学性能分析

罗晓龙 刘军 胡仙平

罗晓龙, 刘军, 胡仙平. 冲击加载条件下金属粉末的动态力学性能分析[J]. 粉末冶金技术, 2018, 36(2): 111-117. doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.006
引用本文: 罗晓龙, 刘军, 胡仙平. 冲击加载条件下金属粉末的动态力学性能分析[J]. 粉末冶金技术, 2018, 36(2): 111-117. doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.006
LUO Xiao-long, LIU Jun, HU Xian-ping. Analysis on dynamic mechanics performance of metal powders by impact loading[J]. Powder Metallurgy Technology, 2018, 36(2): 111-117. doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.006
Citation: LUO Xiao-long, LIU Jun, HU Xian-ping. Analysis on dynamic mechanics performance of metal powders by impact loading[J]. Powder Metallurgy Technology, 2018, 36(2): 111-117. doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.006

冲击加载条件下金属粉末的动态力学性能分析

doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.006
基金项目: 

国家自然科学基金资助项目 11372148

详细信息
    通讯作者:

    刘军, E-mail: liujun@nbu.edu.cn

  • 中图分类号: TF124;TF03+1

Analysis on dynamic mechanics performance of metal powders by impact loading

More Information
  • 摘要: 为研究金属粉末在冲击加载过程中, 粉末预压力对压坯动态力学响应的影响, 设计了基于分离式霍普金森压杆装置(split Hopkinson pressure bar, SHPB)的金属粉末高应变率冲击加载实验, 并结合一维应力波理论对预压后粉末压坯的力学性能进行分析。结果表明:在冲击过程中, 金属压坯会表现出较为明显的应变率效应; 加载率越大, 材料的应变能越大, 预压力越大, 应变硬化率越大; 在相同的加载条件下, 预压力越大, 压坯临界位移越小。
  • 图  1  传统霍普金森压杆示意图

    Figure  1.  General arrangement of a conventional split Hopkinson pressure bar

    图  2  粉末装粉装置

    Figure  2.  Device of filling powder

    图  3  20 kN预压后铁粉在冲击加载条件下的波形曲线

    Figure  3.  Original wave of ferrous powder after 20 kN precompaction under impact loading condition

    图  4  Fe粉试样的对波图

    Figure  4.  Stress equilibrium history for ferrous powder

    图  5  应变率及应力时程曲线

    Figure  5.  Strain and strain-rate histories of ferrous powder

    图  6  预压过程中三种材料的力–位移曲线

    Figure  6.  Force-displacement of three materials curve during precompaction

    图  7  铝粉(a)和铜粉(b)压坯相对密度变化情况

    Figure  7.  Relative density of aluminium powder (a) and copper powder (b)

    图  8  15 kN预压后的铜粉在不同加载速率下的应力–应变曲线

    Figure  8.  Stress–strain curve of copper powder after 15 kN precompaction under different loading velocities

    图  9  20 kN预压后铁粉在不同加载速率下的应力–应变曲线

    Figure  9.  Stress–strain curve of ferrous powder after 20 kN precompaction under different loading velocities

    图  10  应变能随着加载速率的变化情况

    Figure  10.  Change of strain energy under different impact velocities

    图  11  不同预压条件下铜粉应力–应变曲线

    Figure  11.  Stress–strain curve of copper powder under different pre-pressure condition

    图  12  Al粉在不同入射压力下的力–位移曲线

    Figure  12.  Force-displacement curve of aluminium powder under different loading condition

    图  13  不同加载条件下临界位移随预压力的变化情况

    Figure  13.  Change of critical displacement with precompaction force under different loading condition

    表  1  铜粉中各元素的化学成分(质量分数)

    Table  1.   Chemical composition of electrolytic copper powder  %

    Cu Fe Pb As Sb O Bi Ni Sn Zn S Cl 氢损
    99.800 0.020 0.050 0.010 0.010 0.150 0.002 0.003 0.004 0.004 0.004 0.004 0.100
    下载: 导出CSV

    表  2  铁粉中各元素的化学成分(质量分数)

    Table  2.   Chemical composition of reduced iron powder  %

    Fe Mn Si C S HCl不溶物 氢损
    >98.000 0.300 0.110 0.024 0.020 0.450 0.310
    下载: 导出CSV

    表  3  铝粉中各元素的化学成分(质量分数)

    Table  3.   Chemical composition of aluminite powder  %

    Al Cu Fe Si 水份
    99.8000 0.0014 0.0908 0.0409 0.0100
    下载: 导出CSV
  • [1] Richard F. HVC punches PM to new mass production limits. Met Powder Rep, 2002, 57(9): 26. doi: 10.1016/S0026-0657(02)80389-7
    [2] He J, Xiao Z Y, Guan H J, et al. High velocity compaction behavior and sintered properties of pure Ti powder. Powder Metall Technol, 2016, 34(3): 178 doi: 10.3969/j.issn.1001-3784.2016.03.004

    何杰, 肖志瑜, 关航健, 等.纯钛粉高速压制行为及其烧结性能研究.粉末冶金技术, 2016, 34(3): 178 doi: 10.3969/j.issn.1001-3784.2016.03.004
    [3] Edser C. Höganäs promotes potential of high velocity compaction. Met Powder Rep, 2001, 56(9): 6.
    [4] Chelluri B, Knoth E. Powder forming using dynamic magnetic compaction//4th International Conference on High Speed Forming. Columbus, Ohio, 2010: 26. http://www.researchgate.net/publication/43798213_Powder_Forming_Using_Dynamic_Magnetic_Compaction
    [5] Azhdar B, Stenberg B, Kari L. Determination of dynamic and sliding friction, and observation of stick-slip phenomenon on compacted polymer powders during high-velocity compaction. Polym Test, 2006, 25(8): 1069. doi: 10.1016/j.polymertesting.2006.07.009
    [6] Azhdar B, Stenberg B, Kari L. Determination of springback gradient in the die on compacted polymer powders during high-velocity compaction. Polym Test, 2006, 25(1): 114. doi: 10.1016/j.polymertesting.2005.09.002
    [7] Wang J Z, Qu X H, Yin H Q, et al. High velocity compaction of electrolytic copper powder. Chin J Nonferrous Met, 2008, 18(8): 1498 doi: 10.3321/j.issn:1004-0609.2008.08.021

    王建忠, 曲选辉, 尹海清, 等.电解铜粉高速压制成形.中国有色金属学报, 2008, 18(8): 1498 doi: 10.3321/j.issn:1004-0609.2008.08.021
    [8] Yi M J, Yin H Q, Qu X H, et al. Influence of force and stress wave on the quality of green compacts in high velocity compaction. Powder Metall Technol, 2009, 27(3): 207 http://pmt.ustb.edu.cn/article/id/fmyjjs200903012

    易明军, 尹海清, 曲选辉, 等.力与应力波对高速压制压坯质量的影响.粉末冶金技术, 2009, 27(3): 207 http://pmt.ustb.edu.cn/article/id/fmyjjs200903012
    [9] Wang D G. Research on High Densification and Numerical Simulation of Metal Powder Compaction Processes[Dissertation]. Hefei: Hefei University of Technology, 2010

    王德广.金属粉末高致密化成形及其数值模拟研究, 合肥: 合肥工业大学, 2010
    [10] Wu B, Liu J, Yang Y. The influence of the mold wall friction coefficient on HVC powder based on the finite element simulation analysis. Powder Metall Technol, 2014, 32(6): 442 http://pmt.ustb.edu.cn/article/id/fmyjjs201406009

    吴斌, 刘军, 杨勇.基于有限元仿真分析高速压实粉末时模壁摩擦因数对压制效果的影响.粉末冶金技术, 2014, 32(6): 442 http://pmt.ustb.edu.cn/article/id/fmyjjs201406009
    [11] Skoglund P. High density PM parts by high velocity compaction. Powder Metall, 2001, 44(3): 199. http://www.researchgate.net/publication/290814633_High_density_PM_components_by_high_velocity_compaction
    [12] Chi Y, Guo S J, Meng F, et al. High velocity compaction in powder metallurgy. Powder Metall Ind, 2005, 15(6): 41 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201202017.htm

    迟悦, 果世驹, 孟飞, 等.粉末冶金高速压制成形技术.粉末冶金工业, 2005, 15(6): 41 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201202017.htm
    [13] Yang X. Research progress on densification mechanism of powder metallurgy high-velocity compaction. Powder Metall Ind, 2016, 26(5): 57 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201605019.htm

    杨霞.粉末冶金高速压制致密化机制的研究进展.粉末冶金工业, 2016, 26(5): 57 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201605019.htm
    [14] Yan Z Q, Cai Y X, Chen F. High velocity compaction in powder forming and the promising applications. Powder Metall Technol, 2009, 27(6): 455 http://pmt.ustb.edu.cn/article/id/fmyjjs200906013

    闫志巧, 蔡一湘, 陈峰.粉末冶金高速压制技术及其应用.粉末冶金技术, 2009, 27(6): 455 http://pmt.ustb.edu.cn/article/id/fmyjjs200906013
    [15] Wang L L. Foundation of Stress Waves. 2nd Ed. Beijing: National Defense Industry Press, 2005

    王礼立.应力波基础. 2版.北京: 国防工业出版社, 2005
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  169
  • HTML全文浏览量:  66
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-19
  • 刊出日期:  2018-04-27

目录

    /

    返回文章
    返回