放电等离子烧结法制备以升华性材料为造孔剂的人体植入骨替代多孔镁块体材料

冯威 陈雨 邓佩欣 朱晓东 孔清泉 付朝坤 涂佩佩

冯威, 陈雨, 邓佩欣, 朱晓东, 孔清泉, 付朝坤, 涂佩佩. 放电等离子烧结法制备以升华性材料为造孔剂的人体植入骨替代多孔镁块体材料[J]. 粉末冶金技术, 2018, 36(2): 124-129. doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.008
引用本文: 冯威, 陈雨, 邓佩欣, 朱晓东, 孔清泉, 付朝坤, 涂佩佩. 放电等离子烧结法制备以升华性材料为造孔剂的人体植入骨替代多孔镁块体材料[J]. 粉末冶金技术, 2018, 36(2): 124-129. doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.008
FENG Wei, CHEN Yu, DENG Pei-xin, ZHU Xiao-dong, KONG Qing-quan, FU Chao-kun, TU Pei-pei. Preparation of porous magnesium bulk as bone substitute implant by spark plasma sintering using sublimate material as pore-forming agent[J]. Powder Metallurgy Technology, 2018, 36(2): 124-129. doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.008
Citation: FENG Wei, CHEN Yu, DENG Pei-xin, ZHU Xiao-dong, KONG Qing-quan, FU Chao-kun, TU Pei-pei. Preparation of porous magnesium bulk as bone substitute implant by spark plasma sintering using sublimate material as pore-forming agent[J]. Powder Metallurgy Technology, 2018, 36(2): 124-129. doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.008

放电等离子烧结法制备以升华性材料为造孔剂的人体植入骨替代多孔镁块体材料

doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.008
基金项目: 

国家自然科学基金资助项目 11572057

四川省应用基础重点研究资助项目 18YYJC0109

四川省特种材料及制备技术重点实验室开放课题资助项目 szjj2017-062

成都市科技惠民技术研发资助项目 2015-HM01-00385-SF

成都市科技局软科学资助项目 2016-RK00-00044-ZF

国家级大学生创新创业训练计划资助项目 201711079001

详细信息
    通讯作者:

    朱晓东, E-mail:50919808@qq.com

  • 中图分类号: TG142.71

Preparation of porous magnesium bulk as bone substitute implant by spark plasma sintering using sublimate material as pore-forming agent

More Information
  • 摘要: 以萘为造孔剂, 采用放电等离子烧结技术(spark plasma sintering, SPS)制备多孔镁块体材料。结果表明, 采用放电等离子烧结技术在470℃时可以制备出结构与尺寸可控性好、开孔率与孔隙率(44.25%)较高、粉体颗粒无明显长大的多孔金属镁块体材料。升华性造孔剂可对孔隙体积进行有效调节, 实现多孔镁材料体内小孔与大孔的合理搭配, 进一步改善多孔镁材料孔隙之间的连通性。将升华性造孔剂与放电等离子烧结技术相结合后, 对于开孔性与颗粒连接性要求较高的多孔金属材料制备具有技术优势, 并对解决传统造孔剂法制备生物多孔金属材料所面临的二次污染问题具有很好的借鉴意义。
  • 图  1  骨组织在多孔镁中生长示意图: (a)传统放电等离子烧结法制备多孔镁的孔隙构成; (b)满足人体植入用骨替代材料要求的多孔镁孔隙构成

    Figure  1.  Schematic diagram of pore structures of porous Mg bulk in bone tissue: (a) pore structures in porous Mg bulk prepared by traditional SPS; (b) pore structures in porous Mg bulk satisfied the requirements of bone tissue for human implant

    图  2  原料颗粒的扫描电子显微形貌(a)镁粉; (b)萘粉

    Figure  2.  Scanning electron microscope (SEM) images of Mg powders (a) and naphthalene powders (b)

    图  3  放电等离子烧结多孔镁材示意图

    Figure  3.  Schematic of spark plasma sintering of porous Mg bulk

    图  4  不同温度放电等离子烧结后多孔镁内部显微结构: (a) 380℃; (b) 410℃; (c) 440℃; (d) 470℃; (e) 510℃

    Figure  4.  SEM images of porous Mg bulks at different sintering temperatures: (a) 380℃; (b) 410℃; (c) 440℃; (d) 470℃; (e) 510℃

    图  5  添加不同质量分数造孔剂烧结后多孔镁内部结构: (a) 0%; (b) 10%; (c) 15%; (d) 20%; (e) 25%

    Figure  5.  SEM images of porous Mg bulks added by pore-forming agent (naphthaline) in different mass fractions at 470℃: (a) without pore-forming agent; (b) 10%; (c) 15%; (d) 20%; (e) 25%

    图  6  添加萘做造孔剂后多孔镁材料的X射线衍射图谱

    Figure  6.  X-ray diffraction patterns of porous Mg bulk added by pore-forming agent (naphthaline)

    表  1  不同温度放电等离子烧结后多孔镁材料的物理性能

    Table  1.   Physical properties of porous Mg bulk sintered at different temperatures

    样品编号 烧结温度/ ℃ 抗压强度/ MPa 样品质量/ g 多孔镁尺寸/ mm 密度/ (g·cm-3) 孔隙率/ %
    直径 高度
    松装镁粉 4.34 15.50 20.00 1.15 33.87
    # a 380 0.075 4.29 15.48 19.97 1.16 33.33
    # b 410 0.212 4.25 15.45 19.23 1.18 32.18
    # c 440 0.821 4.23 15.33 19.10 1.20 31.03
    # d 470 1.502 4.18 15.21 18.71 1.23 29.31
    # e 510 2.879 4.09 13.12 14.29 1.39 20.11
    下载: 导出CSV

    表  2  添加不同质量分数造孔剂烧结后多孔镁材料的物理性能

    Table  2.   Physical properties of porous Mg bulk added by pore-forming agent (naphthaline) in different mass fractions at 470℃

    样品编号 造孔剂质量分数/ % 抗压强度/ MPa 样品质量/ g 多孔镁尺寸/ mm 密度/ (g·cm-3) 孔隙率/ %
    直径 高度
    松装镁粉 0 4.34 15.50 20.00 1.15 33.87
    # a 0 1.50 4.18 15.21 18.71 1.23 29.31
    # b 5 1.44 4.01 15.48 18.77 1.14 34.48
    # c 10 1.26 3.86 15.47 18.55 1.11 36.02
    # d 15 1.17 3.54 15.47 18.40 1.03 40.80
    # e 20 1.02 3.32 15.47 18.21 0.97 44.25
    # f 25 0.42 3.11 15.47 18.03 0.91 47.70
    下载: 导出CSV
  • [1] Yazdimamaghani M, Razavi M, Vashaee D, et al. Surface modification of biodegradable porous Mg bone scaffold using polycaprolactone/bioactive glass composite. Mater Sci Eng C, 2015, 49(1): 436. http://europepmc.org/abstract/med/25686970
    [2] Carboneras M, García-Alonso M C, Escudero M L. Biodegradation kinetics of modified magnesium-based materials in cell culture medium. Corros Sci, 2011, 53(4): 1433. doi: 10.1016/j.corsci.2011.01.014
    [3] Seyedraoufi Z S, Mirdamadi Sh. Synthesis, microstructure and mechanical properties of porous Mg–Zn scaffolds. J Mech Behav Biomed Mater, 2013, 21(3): 1. http://www.sciencedirect.com/science/article/pii/S1751616113000386
    [4] Vormann J. Magnesium: nutrition and metabolism. Mol Aspects Med, 2003, 24(1-3): 27. doi: 10.1016/S0098-2997(02)00089-4
    [5] Aydog˘muşT, BorŞ. Superelasticity and compression behavior of porous Ti Ni alloys produced using Mg spacers. J Mech Behav Biomed Mater, 2012, 15(2): 59. http://www.sciencedirect.com/science/article/pii/S1751616112001816
    [6] Zheng Y F, Gu X N, Witte F. Biodegradable metals. Mater Sci Eng R, 2014, 77(24): 1.
    [7] Tan Y M, Li J S, Wang J, et al. Seaweed eutectic-dendritic solidification pattern in a CoCrFeNiMnPd eutectic high-entropy alloy. Intermetallics, 2017, 85(4): 74. http://www.sciencedirect.com/science/article/pii/S0966979516305672
    [8] Wang F, Eskin D G, Khvan A V, et al. On the occurrence of a eutectic-type structure in solidification of Al–Zr alloys. Scr Mater, 2017, 133(8): 75. http://www.sciencedirect.com/science/article/pii/S1359646217300933
    [9] Nie Y, Zhang M F, Liu Y, et al. Microstructure and mechanical properties of Al2O3/YAG eutectic ceramic grown by horizontal directional solidification method. J Alloys Compd, 2016, 657(22): 184. http://www.sciencedirect.com/science/article/pii/S0925838815313451
    [10] Vesenjak M, Sulong M A, Krstulović-Opara L, et al. Dynamic compression of aluminium foam derived from infiltration casting of salt dough. Mech Mater, 2016, 93(14): 96. http://www.sciencedirect.com/science/article/pii/S0167663615002215
    [11] Huo D W, Yang J, Zhou X Y, et al. Preparation of open-celled aluminum foams by counter-gravity infiltration casting. Trans Nonferrous Met Soc China, 2012, 22(1): 85. doi: 10.1016/S1003-6326(11)61144-8
    [12] Jiang G F, Li Q Y, Wang C L, et al. Fabrication of graded porous titanium–magnesium composite for load-bearing biomedical applications. Mater Des, 2015, 67(8): 354. http://www.sciencedirect.com/science/article/pii/S0261306914009790
    [13] Cay H, Xu H R, Li Q Z. Mechanical behavior of porous magnesium/alumina composites with high strength and low density. Mater Sci Eng A, 2013, 574(9): 137. http://www.sciencedirect.com/science/article/pii/S0921509313002736
    [14] Čapek J, Vojtěch D. Properties of porous magnesium prepared by powder metallurgy. Mater Sci Eng C, 2013, 33(1): 564. doi: 10.1016/j.msec.2012.10.002
    [15] Kang M H, Jung H D, Kim S W, et al. Production and bio-corrosion resistance of porous magnesium with hydroxyapatite coating for biomedical applications. Mater Lett, 2013, 108(11): 122. http://www.sciencedirect.com/science/article/pii/S0167577X13009075
    [16] Kubásek J, DvorskýD, ČavojskýM, et al. Superior properties of Mg–4Y–3RE–Zr alloy prepared by powder metallurgy. J Mater Sci Technol, 2016, 33(7): 445. http://www.cnki.com.cn/Article/CJFDTotal-CLKJ201707008.htm
    [17] Sponchia G, Boffelli M, Back M, et al. Orthorhombic phase stabilization and transformation phase process in zirconia tantalum-doped powders and spark plasma sintering systems. J Eur Ceram Soc, 2017, 37(10): 3393. doi: 10.1016/j.jeurceramsoc.2017.04.017
    [18] Yu Y D, Dong H Y, Ma B L, et al. Effect of different filler materials on the microstructure and mechanical properties of SiC–SiC joints joined by spark plasma sintering. J Alloys Compd, 2017, 708(10): 373. http://www.sciencedirect.com/science/article/pii/S0925838817308083
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  330
  • HTML全文浏览量:  158
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-19
  • 刊出日期:  2018-04-27

目录

    /

    返回文章
    返回