TiO2柱撑石墨烯复合材料的制备及光催化性能

曾雄丰 王梦幻 路彦丽 张文丽 陈朗

曾雄丰, 王梦幻, 路彦丽, 张文丽, 陈朗. TiO2柱撑石墨烯复合材料的制备及光催化性能[J]. 粉末冶金技术, 2018, 36(2): 130-136. doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.009
引用本文: 曾雄丰, 王梦幻, 路彦丽, 张文丽, 陈朗. TiO2柱撑石墨烯复合材料的制备及光催化性能[J]. 粉末冶金技术, 2018, 36(2): 130-136. doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.009
CENG Xiong-feng, WANG Meng-huan, LU Yan-li, ZHANG Wen-li, CHEN Lang. Synthesis and enhanced photocatalytic activity of TiO2 pillared graphene nanocomposites[J]. Powder Metallurgy Technology, 2018, 36(2): 130-136. doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.009
Citation: CENG Xiong-feng, WANG Meng-huan, LU Yan-li, ZHANG Wen-li, CHEN Lang. Synthesis and enhanced photocatalytic activity of TiO2 pillared graphene nanocomposites[J]. Powder Metallurgy Technology, 2018, 36(2): 130-136. doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.009

TiO2柱撑石墨烯复合材料的制备及光催化性能

doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.009
基金项目: 

河北省自然科学基金钢铁联合基金资助项目 E2015209278

华北理工大学研究生创新项目资助项目 15110204B

详细信息
    通讯作者:

    曾雄丰, E-mail:zengxf@ncst.edu.cn

  • 中图分类号: O643

Synthesis and enhanced photocatalytic activity of TiO2 pillared graphene nanocomposites

More Information
  • 摘要: 通过水热反应合成了TiO2柱撑石墨烯复合材料, 研究了TiO2纳米颗粒及TiO2柱撑石墨烯复合材料的制备以及光催化降解亚甲基蓝性能, 探讨了制备过程中水热反应时间、水热反应步骤对TiO2纳米颗粒的影响, 并在紫外光下考察了上述两种材料对光催化性能的影响。结果表明, 利用两步水热法且反应时间为10 h时为制备复合材料的最佳条件, 在紫外光的照射下, TiO2柱撑石墨烯复合材料在降解亚甲基蓝过程中显示出更高的光催化效率, 这项工作开辟了一条新的制备石墨烯–半导体复合材料的途径。
  • 图  1  不同水热反应时间制备的TiO2纳米颗粒X射线衍射图谱

    Figure  1.  XRD patterns of TiO2 nanoparticles prepared at different reaction time

    图  2  不同水热反应步骤制备的TiO2纳米颗粒X射线衍射图谱

    Figure  2.  XRD patterns of TiO2 nanoparticles prepared at different reaction procedure

    图  3  实验试样X射线衍射图谱: (a)石墨膨胀前后; (b) TiO2纳米颗粒及TiO2柱撑层状石墨烯纳米复合材料

    Figure  3.  XRD patterns of experimental samples: (a) graphite before and after expansion; (b) TiO2 nanoparticles and TiO2-graphene nanocomposites

    图  4  石墨膨胀前后及石墨烯的拉曼光谱(a)和石墨烯的2D峰拟合放大图(b)

    Figure  4.  Raman spectra of graphite before and after expansion and graphene (a) and the enlarged fitting curve of 2D-band of exfoliation graphene product (b)

    图  5  实验试样透射图: (a) TiO2柱撑层状石墨烯纳米复合材料; (b) TiO2纳米颗粒; (c)选择性区域电子衍射图

    Figure  5.  TEM images of experimental samples: (a) TiO2-graphene nanocomposites; (b) TiO2 nanoparticles; (c) SADE pattern of TiO2-graphene nanocomposites

    图  6  TiO2纳米颗粒及TiO2柱撑层状石墨烯纳米复合材料的紫外–可见漫反射吸收光谱

    Figure  6.  UV-vis diffuse reflection spectra of TiO2 nanoparticles and TiO2-graphene nanocomposites

    图  7  催化剂对初始浓度为10 mg/L亚甲基蓝的吸附

    Figure  7.  Adsorbability of MB in the initial concentration of10 mg/L by catalyst

    图  8  不同光催化剂在紫外光下的降解效率(a)和亚甲基蓝的降解效率与照射时间之间的关系(b)

    Figure  8.  Photocatalytic degradation of MB by UV light irradiation (a) and the relationship between MB degradation efficiency and irradiation time (b)

    图  9  TiO2柱撑层状石墨烯纳米复合材料的稳定性实验

    Figure  9.  Stability of TiO2-graphene nanocomposites

  • [1] Song Y, Chen Y, Liu W W, et al. Microscopic mechanical properties of titanium composites containing multi-layer graphene nanofillers. Mater Des, 2016, 109(5): 256. http://www.sciencedirect.com/science/article/pii/S0264127516309753
    [2] Qiu B C, Xing M Y, Zhang J L. Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J Am Chem Soc, 2014, 136(16): 5852. doi: 10.1021/ja500873u
    [3] Ngoh Y S, Nawi M A. Fabrication and properties of an immobilized P25TiO2-montmorillonite bilayer system for the synergistic photocatalytic-adsorption removal of methylene blue. Mater Res Bull, 2016, 76: 8. doi: 10.1016/j.materresbull.2015.11.060
    [4] Djellabi R, Ghorab M F, Cerrato G, et al. Photoactive TiO2-montmorillonite composite for degradation of organic dyes in water. J Photochem Photobiol A, 2014, 295(1): 57. http://www.sciencedirect.com/science/article/pii/S1010603014003797
    [5] Nakata K, Fujishima A. TiO2 photocatalysis: Design and applications. J Photochem Photobiol C, 2012, 13(3): 169. doi: 10.1016/j.jphotochemrev.2012.06.001
    [6] Zhang Y X, Zhou Z, Chen T, et al. Graphene TiO2nanocomposites with high photocatalytic activity for the degradation of sodium pentachlorophenol. J Environ Sci, 2014, 26(10): 2114. doi: 10.1016/j.jes.2014.08.011
    [7] Zhang G K, Ding X M, He F S, et al. Low-temperature synthesis and photocatalytic activity of TiO2 pillared montmorillonite. Langmuir, 2008, 24(3): 1026. doi: 10.1021/la702649v
    [8] Zhang Y H, Tang Z R, Fu X Z, et al. TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials? ACS Nano, 2010, 4(12): 7303. doi: 10.1021/nn1024219
    [9] Zhang Z Y, Xiao F, Guo Y L, et al. One-pot self-assembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities. ACS Nano, 2013, 5(6): 2227. doi: 10.1021/am303299r
    [10] Zhao F H, Dong B H, Gao R J, et al. A three-dimensional graphene-TiO2 nanotube nanocomposite with exceptional photocatalytic activity for dye degradation. Appl Surf Sci, 2015, 351(1): 303. http://www.sciencedirect.com/science/article/pii/S0169433215012490
    [11] Pian X T, Lin B Z, Chen Y L, et al. Pillared nanocomposite TiO2/Bi-doped hexaniobate with visible-light photocatalytic activity. J Phys Chem C, 2011, 115(14): 6531. doi: 10.1021/jp1097553
    [12] Fan X R, Lin B Z, Liu H, et al. Remarkable promotion of photocatalytic hydrogen evolution from water on TiO2-pillared titanoniobate. Int J Hydrogen Energy, 2013, 38(2): 832. doi: 10.1016/j.ijhydene.2012.10.076
    [13] Xiao P. The Preparation of Graphene by Chemical Intercalating Method and Its Application in Supercapacitors[Dissertation]. Lanzhou: Lanzhou University of Technology, 2014

    肖鹏.石墨烯的化学插层法制备及其在超级电容器中的应用, 兰州: 兰州理工大学, 2014
    [14] An Q E, Wu J S, Wang J S. Chemical synthesis of Nb2O5 nanorods and their photocatalytic performance. Powder Metall Technol, 2014, 32(1): 7 doi: 10.3969/j.issn.1001-3784.2014.01.002

    安其尔, 吴俊书, 王金淑.五氧化二铌纳米棒合成及其光催化性能.粉末冶金技术, 2014, 32(1): 7 doi: 10.3969/j.issn.1001-3784.2014.01.002
    [15] Zu C X, Li L J, Qie L, et al. Expandable-graphite-derived graphene for next-generation battery chemistries. J Power Source, 2015, 284(15): 60. http://www.sciencedirect.com/science/article/pii/S0378775315004255
    [16] Zhou K Q, Shi Y Q, Jiang S H, et al. A facile liquid phase exfoliation method to prepare graphene sheets with different sizes expandable graphite. Mater Res Bull, 2013, 48(9): 2985. doi: 10.1016/j.materresbull.2013.04.016
    [17] Mao S, Bao R, Yi J H, et al. Preparation and photocatalytic properties of Ag/AgCl composite powders. Powder Metall Technol, 2017, 35(2): 136 doi: 10.3969/j.issn.1001-3784.2017.02.010

    毛帅, 鲍瑞, 易健宏, 等. Ag/AgCl复合粉末的制备及光催化性能研究.粉末冶金技术, 2017, 35(2): 136 doi: 10.3969/j.issn.1001-3784.2017.02.010
  • 加载中
图(9)
计量
  • 文章访问数:  229
  • HTML全文浏览量:  101
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-12
  • 刊出日期:  2018-04-27

目录

    /

    返回文章
    返回