FCVD-SPS法制备高硅钢软磁复合铁芯及电磁性能研究

江志 梁鹏 吴朝阳 罗自贵 樊希安 李杰

江志, 梁鹏, 吴朝阳, 罗自贵, 樊希安, 李杰. FCVD-SPS法制备高硅钢软磁复合铁芯及电磁性能研究[J]. 粉末冶金技术, 2018, 36(3): 163-169, 210. doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.001
引用本文: 江志, 梁鹏, 吴朝阳, 罗自贵, 樊希安, 李杰. FCVD-SPS法制备高硅钢软磁复合铁芯及电磁性能研究[J]. 粉末冶金技术, 2018, 36(3): 163-169, 210. doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.001
JIANG Zhi, LIANG Peng, WU Zhao-yang, LUO Zi-gui, FAN Xi-an, LI Jie. Preparation and electromagnetic properties of high silicon steel soft magnetic composite cores by FCVD-SPS[J]. Powder Metallurgy Technology, 2018, 36(3): 163-169, 210. doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.001
Citation: JIANG Zhi, LIANG Peng, WU Zhao-yang, LUO Zi-gui, FAN Xi-an, LI Jie. Preparation and electromagnetic properties of high silicon steel soft magnetic composite cores by FCVD-SPS[J]. Powder Metallurgy Technology, 2018, 36(3): 163-169, 210. doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.001

FCVD-SPS法制备高硅钢软磁复合铁芯及电磁性能研究

doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.001
基金项目: 

国家自然科学基金资助项目 51674181

国家自然科学基金资助项目 51374008

钢铁冶金及资源利用省部共建教育部重点实验室开放基金资助项目 FMRUlab17-4

详细信息
    通讯作者:

    吴朝阳, E-mail: wustwuzhaoyang@163.com

  • 中图分类号: TG132.2;TM272

Preparation and electromagnetic properties of high silicon steel soft magnetic composite cores by FCVD-SPS

More Information
  • 摘要: 采用流化气相原位沉积结合放电等离子烧结工艺成功制备了高硅钢软磁复合铁芯Fe-6.5% Si/SiO2(质量分数),并系统研究了复合铁芯微观结构与电磁性能的关系。结果表明,高硅钢软磁复合铁芯中的Fe-6.5% Si颗粒被SiO2绝缘层均匀并且致密的包围,Fe-6.5% Si/SiO2复合铁芯表现出高磁感、高电阻率、良好的频率稳定性、低矫顽力、以及低铁损等优异的电磁特性,饱和磁感应强度为175 emu·g-1,矫顽力为15 Oe,相对磁导率为350(80 kHz),电阻率为8.6×10-5?·m,0.2 T、5 kHz外场下铁损仅为11.8 W·kg-1
  • 图  1  流化气相原位沉积工艺制备Fe–6.5%Si/SiO2粉末流程

    Figure  1.  Preparation technology illustration of Fe–6.5%Si/SiO2 powders by FCVD

    图  2  原料及流化气相原位沉积后Fe–6.5%Si合金粉末扫描电子显微形貌:(a),(b)流化气相原位沉积前原料粉末;(c)(d)流化气相原位沉积后合金粉末

    Figure  2.  SEM images of Fe–6.5%Si alloy powders before and after FCVD: (a), (b) Fe–6.5%Si alloy raw powders before FCVD; (c), (d) Fe–6.5%Si alloy powders after FCVD

    图  3  Fe–6.5%Si合金粉末在流化气相原位沉积前后的X射线衍射图谱

    Figure  3.  XRD patterns of Fe–6.5%Si alloy powders before and after FCVD

    图  4  无SiO2包覆Fe–6.5%Si软磁铁芯和Fe–6.5%Si/SiO2软磁铁芯的截面扫描电子显微形貌和X射线衍射图谱:(a)无SiO2包覆Fe–6.5%Si软磁铁芯截面显微形貌;(b)Fe–6.5%Si/SiO2软磁铁芯截面显微形貌;(c)X射线衍射图谱

    Figure  4.  Cross-section SEM images and XRD profiles of Fe–6.5%Si cores and Fe–6.5%Si/SiO2 composite cores: (a) cross-section SEM images of Fe–6.5%Si cores; (b) cross-section SEM images of Fe–6.5%Si/SiO2 composite cores; (c) XRD patterns

    图  5  退火后无SiO2包覆Fe–6.5%Si软磁铁芯和Fe–6.5%Si/ SiO2软磁复合铁芯磁滞回线

    Figure  5.  Hysteresis loops of Fe–6.5%Si cores and Fe–6.5%Si/ SiO2 composite cores after annealing

    图  6  退火后无SiO2包覆Fe–6.5%Si软磁铁芯和Fe–6.5%Si/ SiO2软磁复合铁芯的相对磁导率随测试频率变化趋势

    Figure  6.  Relative permeability with frequency of Fe–6.5%Si cores and Fe–6.5%Si/SiO2 composite cores after annealing

    表  1  流化气相原位沉积前后Fe–6.5%Si合金粉末表面成分

    Table  1.   Surface chemical compositions of Fe–6.5%Si alloy powders before and after FCVD   %

    元素 流化气相原位沉积前原料粉末表面成分/% 流化气相原位沉积后粉末表面成分/%
    质量分数 原子数分数 质量分数 原子数分数
    Fe 92.77 86.58 82.68 63.72
    Si 7.23 13.42 8.89 13.63
    O 0 0 8.43 22.65
    总计 100 100 100 100
    下载: 导出CSV

    表  2  无SiO2包覆Fe–6.5%Si软磁铁芯、Fe–6.5%Si/SiO2软磁复合铁芯和JFE生产的传统Fe–6.5%Si软磁铁芯电磁性能比较

    Table  2.   Electric and magnetic characteristics of Fe–6.5%Si cores, Fe–6.5%Si/SiO2 composite cores, and Fe–6.5%Si alloy cores by JFE

    分类 厚度/ mm 电阻率/ (Ω·m) 铁损,Wi/j* / (W·kg; -1)
    W1/50 W1/400 W1/1 k W0.5/2 k W0.2/5 k
    无SiO2包覆Fe–6.5%Si软磁铁芯 10 9.7 × 10;-7 21.7 108.2 358.4 248.2 191.3
    Fe–6.5%Si/SiO2软磁复合铁芯(本实验) 10 8.6 × 10;-5 1.6 11.2 36.8 22.4 11.8
    传统Fe–6.5%Si软磁铁芯(JFE) 1.2 14.5 51.6 29.1 17.9
    *Wi/j是指在外场强度i(单位:T)、外场频率j(单位:Hz)条件下测试材料的铁损值。
    下载: 导出CSV
  • [1] Takashi D, Hironori N. High silicon steel sheet realizing excellent high frequency reactor performance // Applied Power Electronics Conference and Exposition. Austin, 2005: 1740
    [2] Fan X A, Wu Z Y, Li G Q, et al. MA–SPS preparation technology and magnetic properties of high silicon electrical steel core. Powder Metall Technol, 2013, 31(4): 267 doi: 10.3969/j.issn.1001-3784.2013.04.006

    樊希安, 吴朝阳, 李光强, 等. 高Si电工钢铁芯的MA–SPS制备工艺和磁性能研究. 粉末冶金技术, 2013, 31(4): 267 doi: 10.3969/j.issn.1001-3784.2013.04.006
    [3] Yang K, Liang Y F, Ye F, et al. Texture evolution of Nb micro-alloyed Fe14Si2 high silicon steel during warm rolling. Acta Metall Sinica, 2013, 49(11): 1411 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201311021.htm

    杨琨, 梁永锋, 叶丰, 等. Nb微合金化Fe14Si2高硅钢温轧板织构演变规律. 金属学报, 2013, 49(11): 1411 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201311021.htm
    [4] Fu H D, Zhang Z H, Wu X S, et al. Effects of boron on microstructure and mechanical properties of Fe–6.5%Si alloy fabricated by directional solidification. Intermetallics, 2013, 35: 67 doi: 10.1016/j.intermet.2012.12.005
    [5] Wang D, Zhou C, Xu G J, et al. Heat transfer behavior of top side-pouring twin-roll casting. J Mater Process Technol, 2014, 214(6): 1275 doi: 10.1016/j.jmatprotec.2014.01.009
    [6] Xie J X, Fu H D, Zhang Z H, et al. Deformation twinning feature and its effects on significant enhancement of tensile ductility in columnar-grained Fe–6.5%Si alloy at intermediate temperatures. Intermetallics, 2012, 23: 20 doi: 10.1016/j.intermet.2011.12.011
    [7] Tian G K, Sun Y, Kong L G, et al. Study on the evolution of microstructure and properties in preparing Fe–6.5%Si alloy by means of PVD method. J Funct Mater, 2015, 46(1): 1117 doi: 10.3969/j.issn.1001-9731.2015.01.024

    田广科, 孙勇, 孔令刚, 等. PVD法渗Si制备6.5%Si高硅钢过程组织结构与性能演化研究. 功能材料, 2015, 46(1): 1117 doi: 10.3969/j.issn.1001-9731.2015.01.024
    [8] Long Q, Zhong Y B, Li F, et al. Effect of static magnetic field on the morphology and Si content of Fe–Si composite coating. Acta Metall Sinica, 2013, 49(10): 1201 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201310007.htm

    龙琼, 钟云波, 李甫, 等. 稳恒磁场对Fe–Si复合电镀层形貌及Si含量的影响. 金属学报, 2013, 49(10): 1201 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201310007.htm
    [9] Ma L, Xiang L, Qiu S T, et al. Effect of normalizing on magnetic property of 5.28%Si–1.11%Al non-oriented high silicon steel produced by twin roll thin strip casting. Heat Treat Met, 2013, 38(6): 58 doi: 10.3969/j.issn.1673-4971.2013.06.013

    马良, 项利, 仇圣桃, 等. 正火对双辊薄带连铸5.28%Si–1.11%Al无取向高硅钢磁性能的影响. 金属热处理, 2013, 38(6): 58 doi: 10.3969/j.issn.1673-4971.2013.06.013
    [10] Li R, Shen Q, Zhang L M, et al. Magnetic properties of high silicon iron sheet fabricated by direct powder rolling. J Magn Magn Mater, 2004, 281(2-3): 135 doi: 10.1016/j.jmmm.2004.04.098
    [11] Yuan W J, Shen Q, Zhang L M. Research on Fe–6.5%Si silicon steel produced by powder rolling technique. Powder Metall Technol, 2007, 25(1): 32 doi: 10.3321/j.issn:1001-3784.2007.01.008

    员文杰, 沈强, 张联盟. 粉末轧制法制备Fe–6.5%Si硅钢片的研究. 粉末冶金技术, 2007, 25(1): 32 doi: 10.3321/j.issn:1001-3784.2007.01.008
    [12] Wu Z Y, Fan X A, Wang J, et al. Core loss reduction in Fe–6.5%Si/SiO2 core-shell composites by ball milling coating and spark plasma sintering. J Alloys Compd, 2014, 617: 21 doi: 10.1016/j.jallcom.2014.07.217
    [13] Ma T G, Li H, Tian G K, et al. Study on the evolution of magnetic properties in preparing Fe–6.5%Si alloy by means of PVD method. J Funct Mater, 2016, 47(4): 4196 doi: 10.3969/j.issn.1001-9731.2016.04.040

    马天国, 李辉, 田广科, 等. PVD法制备6.5%Si高硅钢过程合金磁性能演化机理研究. 功能材料, 2016, 47(4): 4196 doi: 10.3969/j.issn.1001-9731.2016.04.040
    [14] Wu Z Y, Jiang Z, Fan X A, et al. Based on the Heterogeneity of Injection Fluidization Device and the Preparation Methods of Preparation of Composite Powder: China Patent, 201034548. 2008–3–12

    吴朝阳, 江志, 樊希安, 等. 一种基于喷吹流化的异质复合粉末的制备装置及制备方法: 中国专利, 2017108046172. 2017–9–8
    [15] Fan X A, Wu Z Y, Li G Q, et al. High resistivity and low core loss of intergranular insulated Fe–6.5wt. %Si/SiO2 composite compacts. Mater Des, 2016, 89: 1251 doi: 10.1016/j.matdes.2015.10.087
    [16] Zhang J F, Zhang X, Li G Y, et al. Densification of hBN with the as-coated SiO2 nanolayer by rotary chemical vapor deposition. J Ceram Soc Jpn, 2015, 123(5): 423 http://ci.nii.ac.jp/naid/130005068639
    [17] Yanai H, Kawazoe K, Kuwazuru Y, et al. Study for the possibility of utilization of lower volatility material in thin film deposition by the vacuum ultraviolet CVD. Memoirs Faculty Eng Miyazaki Univ, 2015, 44: 77

    柳井秀仁, 川添圭祐, 桑水流康記, 等. 真空紫外光CVDによる薄膜形成技術における難気化原料使用の可能性の検討. 宮崎大學工學部紀要, 2015, 44: 77
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  136
  • HTML全文浏览量:  79
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-22
  • 刊出日期:  2018-06-27

目录

    /

    返回文章
    返回