铜基高通量换热管内多孔层的制备及性能研究

赵洋 任淑彬 王凤林 曲选辉

赵洋, 任淑彬, 王凤林, 曲选辉. 铜基高通量换热管内多孔层的制备及性能研究[J]. 粉末冶金技术, 2018, 36(3): 170-176. doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.002
引用本文: 赵洋, 任淑彬, 王凤林, 曲选辉. 铜基高通量换热管内多孔层的制备及性能研究[J]. 粉末冶金技术, 2018, 36(3): 170-176. doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.002
ZHAO Yang, REN Shu-bin, WANG Feng-lin, QU Xuan-hui. Preparation and properties of porous layer in copper based high flux heat transfer tube[J]. Powder Metallurgy Technology, 2018, 36(3): 170-176. doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.002
Citation: ZHAO Yang, REN Shu-bin, WANG Feng-lin, QU Xuan-hui. Preparation and properties of porous layer in copper based high flux heat transfer tube[J]. Powder Metallurgy Technology, 2018, 36(3): 170-176. doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.002

铜基高通量换热管内多孔层的制备及性能研究

doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.002
详细信息
    通讯作者:

    任淑彬, E-mail: sbren@ustb.edu.cn

  • 中图分类号: TQ051.5

Preparation and properties of porous layer in copper based high flux heat transfer tube

More Information
  • 摘要: 烧结型高通量换热管是通过在普通换热管内表面烧结一定厚度的多孔金属层达到强化沸腾传热的效果,多孔层的烧结温度对基管性能不能有损伤,同时要求多孔层本身孔隙连通,与基管结合较好,且耐蚀性与基管相当。本文设计了一种适用于铁白铜基管(BFe10-1-1)的管内多孔层烧结合金粉末Cu-10% Ni-20% Zn-2% Sn(质量分数),该粉末成分耐蚀性优于基管。烧结实验结果表明,该合金粉末在940℃下烧结时对基管性能无损伤,烧结后与基管结合良好,同时粉末多孔层内部孔隙均匀联通;进一步的应用实验也证明,该多孔层合金粉末具有非常好的传热效果。
  • 图  1  烧结温度对铁白铜管晶粒形貌的影响:(a)未烧结;(b)940 ℃;(c)995 ℃;(d)进口管

    Figure  1.  Effect of sintering temperatures on grain morphology of BFe10-1-1 based tubes: (a) unsintered based tube; (b) 940 ℃; (c) 995 ℃; (d) inlet based tube

    图  2  不同材料极化曲线(实验介质50%乙二醇)

    Figure  2.  Polarization curves of different materials in 50% glycol solution by volume

    图  3  不同烧结温度下合金管内多孔层显微形貌:(a)900 ℃横截面;(b)900 ℃表面;(c)940 ℃横截面;(d)940 ℃表面

    Figure  3.  Microstructures of porous layer in alloy tube sintered at different temperatures: (a) cross section morphology at 900 ℃; (b) surface morphology at 900 ℃; (c) cross section morphology at 940 ℃; (d) surface morphology at 940 ℃

    图  4  不同温度烧结后合金管压扁和拉伸实验形貌:(a)900 ℃烧结后压扁;(b)940 ℃烧结后压扁;(c)940 ℃烧结后拉伸

    Figure  4.  Morphology of alloy tubes in flattening and tensile test sintered at different temperatures: (a) flattening test after sintered at 900 ℃; (b) flattening test after sintered at 940 ℃; (c) tensile test after sintered at 940 ℃

    图  5  内壁涂覆烧结多孔层铁白铜管与光滑原始基管在乙二醇溶液中的综合传热性能对比:(a)体积分数30%乙二醇溶液;(b)体积分数50%乙二醇溶液

    Figure  5.  Comprehensive heat transfer performance between sintered porous tube and smooth primordial tube in glycol solution: (a) 30% glycol solution by volume; (b) 50% glycol solution by volume

    表  1  实验用铁白铜管(BFe10-1-1)力学性能标准

    Table  1.   Mechanical properties of BFe10-1-1 tube for heat exchangers

    标准 材质 状态 力学性能 晶粒度/ μm
    抗拉强度/ MPa 屈服强度/ MPa 延伸率/ %
    GB/T 8890–2015 BFe10-1-1
    (CuNi10Mn1Fe1)
    Y2
    (半硬态)
    345 10 10~50
    下载: 导出CSV

    表  2  烧结温度对基管晶粒尺寸和力学性能的影响

    Table  2.   Effect of sintering temperature on grain size and mechanical properties of based tube

    烧结温度/ ℃ 平均晶粒尺寸/ μm 抗拉强度/ MPa 延伸率/ % 屈服强度/ MPa
    半硬态原始管 晶粒严重变形,无法测量 366 22.0 171
    900 20.0 380 22.0 171
    940 22.5 381 21.5 173
    960 48.0 364 19.3 164
    970 55.0 350 17.5 160
    995 63.4 340 16.0 155
    国外进口成品烧结管 440.0 无法测量 无法测量 无法测量
    GB/T 8890–2015 10.0~50.0 345 10.0
    下载: 导出CSV

    表  3  致密块状或片状材料的耐蚀性比较

    Table  3.   Corrosion resistance comparison of different materials as compact block or flake

    试样 材质 腐蚀电流/ A 强弱
    合金块 Cu–10%Ni–20%Zn–2%Sn 1.271× 10-6 1
    原始基管 BFe10-1-1 8.603× 10-6 3
    烧后基管 BFe10-1-1 2.618× 10-6 2
    进口管
    (对比试样)
    Cu–10%Ni 4.199× 10-5 4
    下载: 导出CSV
  • [1] Zhao C L, Wang X S, Meng X Y, et al. Experimental study on high-flux tube and design of reboiler. Res Explor Lab, 2016, 35(10): 64 doi: 10.3969/j.issn.1006-7167.2016.10.017

    赵传亮, 王学生, 孟祥宇, 等. 高通量管实验研究及再沸器设计. 实验室研究与探索, 2016, 35(10): 64 doi: 10.3969/j.issn.1006-7167.2016.10.017
    [2] 刘京雷, 徐宏, 徐鹏, 等. 高通量换热器研制开发及应用//全国第四届换热器学术会议. 合肥, 2011: 45

    Liu J L, Xu H, Xu P, et al. Manufacture and application of high flux heat exchanger // Proceedings of the 4th National Conference on Heat Exchangers. Hefei, 2011: 45
    [3] 俞佳, 陆友俊, 张冠文, 等. 高通量换热管与烧结型高通量换热管性能介绍. 中国冶金, 2017, 27(8): 50 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYE201708012.htm
    [4] Xu H, Dai Y L, Xia X M, et al. Manufacture of high flux heat exchanger and its application in large scale petrochemical equipment. J Taiyuan Univ Technol, 2010, 41(5): 577 https://www.cnki.com.cn/Article/CJFDTOTAL-TYGY201005030.htm

    徐宏, 戴玉林, 夏翔鸣, 等. 高通量换热器研制及在大型石化装置中的节能应用. 太原理工大学学报, 2010, 41(5): 577 https://www.cnki.com.cn/Article/CJFDTOTAL-TYGY201005030.htm
    [5] Lv W. Application of exchanges equipments of high flux tube in the gas separation unit. Pet Chem Equip, 2011, 14(6): 11 doi: 10.3969/j.issn.1674-8980.2011.06.003

    吕伟. 高通量管换热设备在气分装置上的应用. 石油和化工设备, 2011, 14(6): 11 doi: 10.3969/j.issn.1674-8980.2011.06.003
    [6] Tao L Q, Liu J L, Xia X M, et al. Corrosion resistance properties of stainless steel-based porous layer of high flux exchanging tube in acetic acid solution. Chem Ind Eng Prog, 2017, 36(6): 2255 https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201706043.htm

    陶良权, 刘京雷, 夏翔鸣, 等. 不锈钢基高通量换热管多孔层的耐乙酸腐蚀特性. 化工进展, 2017, 36(6): 2255 https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201706043.htm
    [7] Huang C L, Zhong J S. Mechanism for enhancing heat transfer of surface porous tube. Equip Manuf Technol, 2007(1): 70 doi: 10.3969/j.issn.1672-545X.2007.01.029

    黄崇林, 钟经山. 表面多孔管强化传热机理. 装备制造技术, 2007(1): 70 doi: 10.3969/j.issn.1672-545X.2007.01.029
    [8] Cieśliński J T. Flow and pool boiling on porous coated surfaces. Rev Chem Eng, 2011, 27(3-4): 179 http://www.degruyter.com/view/j/revce.2011.27.issue-3-4/revce.2011.007/revce.2011.007.xml?format=INT&intcmp=trendmd
    [9] Liu X F, Li M, Zhao Y T, et al. Domestic design of high flux heat exchanger. Refin Chem Ind, 2011, 22(2): 23 doi: 10.3969/j.issn.1671-4962.2011.02.009

    刘晓凤, 李梅, 赵院婷, 等. 高通量换热器的国产化设计. 炼油与化工, 2011, 22(2): 23 doi: 10.3969/j.issn.1671-4962.2011.02.009
    [10] Liu J S, Cao H H, Yuan Y Z, et al. Brief introduction of sintered surface porous high flux heat exchanger. Process Equip Pip, 2009, 46(Supple 1): 39

    刘建书, 曹洪海, 袁云中, 等. 烧结型表面多孔高通量换热器简介. 化工设备与管道, 2009, 46(增刊1): 39
    [11] Liu K H, Xu H, Huang Z R, et al. A Low-temperature Sintering Method for Porous Surface Tubes: China Patent, CN03116481.1. 2003‒04‒18

    刘宽宏, 徐宏, 黄志荣, 等. 一种表面多孔管的低温烧结方法: 中国专利, CN03116481.1. 2003‒04‒18
    [12] Standardization Administration of the People's Republic of China. GB/T 8890‒2015 Copper Alloy Seamless Tubes for Heat Exchangers. Beijing: China Standards Press, 2016

    中国国家标准化管理委员会. GB/T 8890‒2015热交换器用铜合金无缝管. 北京: 中国标准出版社, 2016
    [13] Dong Q Y. Study of the Effect of Grain Size and Temperature on the Mechanical Properties of Cu‒Zn Alloy [Dissertation]. Chongqing: Chongqing University, 2015

    董倩玉. 晶粒尺寸与温度对铜锌合金力学性能影响的研究[学位论文]. 重庆: 重庆大学, 2015
    [14] Xu Z H. Metal corrosion resistant material, No. 10 copper alloy. Corros Prot, 2001, 22(10): 458 doi: 10.3969/j.issn.1005-748X.2001.10.014

    徐增华. 金属耐蚀材料, 第十讲铜合金. 腐蚀与防护, 2001, 22(10): 458 doi: 10.3969/j.issn.1005-748X.2001.10.014
    [15] Tian R Z, Wang Z T. Copper Alloy and its Processing Manual. Hunan: Central South University Press, 2002

    田荣璋, 王祝堂. 铜合金及其加工手册. 湖南: 中南大学出版社, 2002
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  137
  • HTML全文浏览量:  230
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-23
  • 刊出日期:  2018-06-27

目录

    /

    返回文章
    返回