合金元素铜对粉末冶金表面滚压致密化效果的影响

丁霞 彭景光

丁霞, 彭景光. 合金元素铜对粉末冶金表面滚压致密化效果的影响[J]. 粉末冶金技术, 2018, 36(3): 190-195. doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.005
引用本文: 丁霞, 彭景光. 合金元素铜对粉末冶金表面滚压致密化效果的影响[J]. 粉末冶金技术, 2018, 36(3): 190-195. doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.005
DING Xia, PENG Jing-guang. Effect of Cu alloy element on the performance of powder metallurgy surface rolling densification[J]. Powder Metallurgy Technology, 2018, 36(3): 190-195. doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.005
Citation: DING Xia, PENG Jing-guang. Effect of Cu alloy element on the performance of powder metallurgy surface rolling densification[J]. Powder Metallurgy Technology, 2018, 36(3): 190-195. doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.005

合金元素铜对粉末冶金表面滚压致密化效果的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.005
详细信息
    通讯作者:

    丁霞, E-mail: xiad@shautopm.com.cn

  • 中图分类号: TF125.1

Effect of Cu alloy element on the performance of powder metallurgy surface rolling densification

More Information
  • 摘要: 表面滚压致密化工艺不仅能降低齿轮齿面的噪音,还能提高齿轮齿面的抗滚动接触疲劳性能,在粉末冶金齿轮生产领域得到广泛应用。滚压粉末冶金坯料的原始成分对滚压致密化效果有很大的影响,本文研究了合金元素Cu的质量分数对滚压效果的影响,从材料的孔隙情况、组织结构、硬度、耐磨性等方面分析讨论了表面滚压致密化工艺原料的选择问题。结果表明,坯料原始成分中Cu质量分数对齿轮用粉末冶金零件的表面致密化行为和性能起到重要作用,Cu质量分数越低,材料的合金化程度越低,塑性变形抗力越低,在相同的滚压条件下,可以获得较好的表面致密化效果;Cu质量分数的增加有利于提高零件的硬度和耐磨性,当Cu质量分数为1.4%时,零件表面致密层深度为1.13 mm,耐磨性较高,具有最优的综合性能,更适合实际工况的应用。
  • 图  1  含不同质量分数Cu元素的滚压试样孔隙率分布

    Figure  1.  Porosity distribution of rolling samples added by Cu in different mass fractions

    图  2  添加不同质量分数Cu的滚压试样致密层深度

    Figure  2.  Dense layer depth of rolling samples added by Cu in different mass fractions

    图  3  添加不同质量分数Cu的滚压试样显微硬度分布

    Figure  3.  Micro-hardness distribution of rolling samples added by Cu in different mass fractions

    图  4  添加不同质量分数Cu的滚压试样表面粗糙度

    Figure  4.  Surface roughness of rolling samples added by Cu in different mass fractions

    图  5  添加不同质量分数Cu元素的滚压零件金相照片:(a)0%;(b)1.0%;(c)1.4%;(d)2.0%

    Figure  5.  Metallographs of rolling samples added by Cu in different mass fractions: (a) 0%; (b) 1.0%; (c) 1.4%; (d) 2.0%

    图  6  添加不同质量分数Cu元素的滚压零件扫描电子显微形貌:(a)0%;(b)1.0%;(c)1.4%;(d)2.0%

    Figure  6.  SEM images of rolling samples added by Cu in different mass fractions: (a) 0%; (b) 1.0%; (c) 1.4%; (d) 2.0%

    图  7  添加不同质量分数Cu元素的滚压试样在致密区内划痕深度随划刻长度的变化曲线

    Figure  7.  Penetration depth with scratch length in densification region of rolling samples added by Cu in different mass fractions

    图  8  添加不同质量分数Cu元素的滚压试样在致密区的摩擦系数随划刻长度的变化曲线

    Figure  8.  Friction coefficient with scratch length in densification region of rolling samples added by Cu in different mass fractions

    表  1  实验原料化学成分(质量分数)

    Table  1.   Chemical composition of raw material   %

    试样编号 Astaloy85Mo C Cu
    1 余量 0.8
    2 余量 0.8 1.0
    3 余量 0.8 1.4
    4 余量 0.8 2.0
    下载: 导出CSV
  • [1] Menapace C, Molinari A, Kazior J, et al. Surface self-densification in boron alloyed austenitic stainless steel and its effect on corrosion and impact resistance. Powder Metall, 2007, 50(4): 326 doi: 10.1179/174329007X205028
    [2] Takemasu T, Koide T, Takeda Y, et al. Properties of densification by surface rolling and load bearing capacity of 1.5Cr–0.2Mo high density sintered steel rollers and gears. J Solid Mech Mater Eng, 2011, 5(12): 825 doi: 10.1299/jmmp.5.825
    [3] Fordén L, Bengtsson S, Bergström M. Comparison of high performance PM gears manufactured by conventional and warm compaction and surface densification. Powder Metall, 2005, 48(1): 10 doi: 10.1179/pom.2005.48.1.10
    [4] Lawcoek R. Rolling-contact fatigue of surface-densified gears. Int J Powder Metall, 2006, 42(1): 17 http://ci.nii.ac.jp/naid/80019214290
    [5] Takemasu T, Koide T, Shinbutsu T, et al. Effect of surface rolling on load bearing capacity of pre-alloyed sintered steel gears with different densities. Procedia Eng, 2014, 81: 334 doi: 10.1016/j.proeng.2014.10.002
    [6] Yu Y, Fordén L. Surface densification—an effective way to improve the performance of sintered gears. Powder Metall Technol, 2005, 23(1): 62 doi: 10.3321/j.issn:1001-3784.2005.01.013

    于洋, Fordén L. 表面致密化—一种提高烧结齿轮性能的有效方法. 粉末冶金技术, 2005, 23(1): 62 doi: 10.3321/j.issn:1001-3784.2005.01.013
    [7] Slattery R, Hanejko F, Rawlings A, et al. Powder metallurgy of high density helical gears. Powder Metall Ind, 2012, 22(4): 1 doi: 10.3969/j.issn.1006-6543.2012.04.001

    Slattery R, Hanejko F, Rawlings A, 等. 高密度粉末冶金螺旋齿轮. 粉末冶金工业, 2012, 22(4): 1 doi: 10.3969/j.issn.1006-6543.2012.04.001
    [8] Fordén L, Bengtsson S, Bergström M. PM takes on truck test in the gearbox. Met Powder Rep, 2004, 59(11): 14 doi: 10.1016/S0026-0657(04)00298-X
    [9] Bengtsson S, Fordén L, Johansson P, et al. Rolling contact fatigue tests of selectively densified materials // Automotive and Transportation Technology Congress and Exposition. Barcelona, 2001: 370
    [10] Trasorras J R L, Nigarura S, Sigl L S. DensiForm® technology for wrought-steel-like performance of powder metal components // 2006 SAE World Congress. Michigan, 2006: 398
    [11] Peng J J, Chen D, Li D K, et al. Process development of surface rolling densification powder metallurgy sprockets. Powder Metall Technol, 2016, 34(6): 450 doi: 10.3969/j.issn.1001-3784.2016.06.010

    彭景光, 陈迪, 李德凯, 等. 粉末冶金表面滚压致密化链轮工艺的开发. 粉末冶金技术, 2016, 34(6): 450 doi: 10.3969/j.issn.1001-3784.2016.06.010
    [12] Liu X, Xiao Z Y, Guan H J, et al. Experimental study on the surface densification of Fe–2Cu–0.6C powder metallurgy material. Mater Manuf Processes, 2016, 31(12): 1621 doi: 10.1080/10426914.2015.1117619
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  333
  • HTML全文浏览量:  77
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-11
  • 刊出日期:  2018-06-27

目录

    /

    返回文章
    返回