稀土元素Ce对Cu-Al2O3复合材料组织及性能的影响

刘贵民 杜林飞 闫涛 朱硕 惠阳

刘贵民, 杜林飞, 闫涛, 朱硕, 惠阳. 稀土元素Ce对Cu-Al2O3复合材料组织及性能的影响[J]. 粉末冶金技术, 2018, 36(3): 196-200, 216. doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.006
引用本文: 刘贵民, 杜林飞, 闫涛, 朱硕, 惠阳. 稀土元素Ce对Cu-Al2O3复合材料组织及性能的影响[J]. 粉末冶金技术, 2018, 36(3): 196-200, 216. doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.006
LIU Gui-min, DU Lin-fei, YAN Tao, ZHU Shuo, HUI Yang. Effect of rare earth Ce on the microstructure and properties of Cu-Al2O3 composites[J]. Powder Metallurgy Technology, 2018, 36(3): 196-200, 216. doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.006
Citation: LIU Gui-min, DU Lin-fei, YAN Tao, ZHU Shuo, HUI Yang. Effect of rare earth Ce on the microstructure and properties of Cu-Al2O3 composites[J]. Powder Metallurgy Technology, 2018, 36(3): 196-200, 216. doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.006

稀土元素Ce对Cu-Al2O3复合材料组织及性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.006
基金项目: 

北京市自然科学基金资助项目 2152031

详细信息
    通讯作者:

    刘贵民, E-mail: lgm1971@sina.com

  • 中图分类号: TB333

Effect of rare earth Ce on the microstructure and properties of Cu-Al2O3 composites

More Information
  • 摘要: 采用机械合金化与放电等离子烧结的方法制备了不同质量分数的Cu-Al2O3-Ce复合材料,研究了稀土元素Ce对Cu-Al2O3复合材料显微组织形貌及硬度、抗拉强度、导电率、摩擦磨损等物理性能的影响。结果表明:Cu-Al2O3-Ce复合材料中的陶瓷颗粒更加均匀弥散的分布在基体中;加入稀土元素Ce后的Cu-Al2O3-Ce复合材料硬度为HV 108.2、拉伸强度为301 MPa、断面伸长率为19.6%、导电率为54.51 MS·m-1,与Cu-Al2O3相比有明显提升;Cu-Al2O3的磨损机理主要为磨粒磨损,Cu-Al2O3-Ce主要为黏着磨损,当摩擦速率较大时,Cu-Al2O3-Ce的摩擦系数和体积磨损率更小,耐磨性能优于Cu-Al2O3
  • 图  1  Cu–Al2O3和Cu–Al2O3–0.02%Ce复合材料扫描电子显微形貌:(a)Cu–Al2O3;(b)Cu–Al2O3–0.02%Ce

    Figure  1.  SEM images of Cu–Al2O3 and Cu–Al2O3–0.02%Ce composites: (a) Cu–Al2O3; (b) Cu–Al2O3–0.02%Ce

    图  2  Cu–Al2O3和Cu–Al2O3–0.02%Ce复合材料背散射SEM形貌:(a)Cu–Al2O3;(b)Cu–Al2O3–0.02%Ce

    Figure  2.  Backscattered electron images of Cu–Al2O3 and Cu–Al2O3–0.02%Ce composites: (a) Cu–Al2O3; (b) Cu–Al2O3– 0.02%Ce

    图  3  摩擦速率对Cu–Al2O3和Cu–Al2O3–0.02%Ce复合材料摩擦系数的影响

    Figure  3.  Effect of friction speed on the friction coefficient of Cu–Al2O3 and Cu–Al2O3–0.02%Ce composites

    图  4  Cu–Al2O3(a)和Cu–Al2O3–0.02%Ce(b)复合材料的磨痕形貌和元素分布

    Figure  4.  Wearing surface and element distribution of Cu–Al2O3 (a) and Cu–Al2O3–0.02%Ce (b) composites

    图  5  摩擦速率对Cu–Al2O3和Cu–Al2O3–0.02%Ce复合材料磨损量的影响

    Figure  5.  Effect of friction speed on the wear rate of Cu–Al2O3 and Cu–Al2O3–0.02%Ce composites

    表  1  添加不同质量分数Ce的Cu–Al2O3复合材料力学性能

    Table  1.   Mechanical properties of Cu–Al2O3 composites doped with rare earth Ce in different mass fractions

    材料 硬度,HV 抗拉强度/ MPa 断面伸长率/ % 电导率/ (MS·m-1)
    Cu–Al2O3 101.8 264 10.6 48.37
    Cu–Al2O3–0.01%Ce 108.2 301 19.6 54.51
    Cu–Al2O3–0.02%Ce 111.6 306 17.7 53.61
    Cu–Al2O3–0.03%Ce 113.6 307 16.1 53.22
    下载: 导出CSV
  • [1] Li M X, Guo Z M, Zhao Q T. Progress in and applications of copper-based alloys. Powder Metall Ind, 2008, 18(1): 36 doi: 10.3969/j.issn.1006-6543.2008.01.009

    李美霞, 郭志猛, 赵奇特. 氧化铝弥散强化铜的研究进展及其应用. 粉末冶金工业, 2008, 18(1): 36 doi: 10.3969/j.issn.1006-6543.2008.01.009
    [2] Li B, Liu G M, Ding H D, et al. Effect of rare earth La on microstructure and properties of Al2O3/Cu composites. Rare Met Mater Eng, 2014, 43(5): 1272 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201405052.htm

    李斌, 刘贵民, 丁华东, 等. 稀土La对Al2O3/Cu复合材料组织与性能的影响. 稀有金属材料与工程, 2014, 43(5): 1272 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201405052.htm
    [3] Zhang Y F, Ji Z, Liu G M, et al. Manufacturing process and properties of Al2O3 dispersion strengthened copper-based composite with high electrical conductivity, Powder Metall Technol, 2016, 34(5): 346 doi: 10.3969/j.issn.1001-3784.2016.05.005

    张一帆, 纪箴, 刘贵民, 等. Al2O3弥散增强Cu基高导电率复合材料的制备及性能研究. 粉末冶金技术, 2016, 34(5): 346 doi: 10.3969/j.issn.1001-3784.2016.05.005
    [4] Lv Q A, Lei B, Li Z Y, et al. Summary of electromagnetic railgun military applications. J Gun Launch Control, 2009(1): 92 doi: 10.3969/j.issn.1673-6524.2009.01.023

    吕庆敖, 雷彬, 李治源, 等. 电磁轨道炮军事应用综述. 火炮发射与控制学报, 2009(1): 92 doi: 10.3969/j.issn.1673-6524.2009.01.023
    [5] Liu G M, Yang Z X, Yan T, et al. Current status and prospect on rail failures of electromagnetic railgun. Mater Rev, 2015, 29(4): 63 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201507011.htm

    刘贵民, 杨忠须, 闫涛, 等. 电磁轨道炮导轨失效研究现状及展望. 材料导报, 2015, 29(4): 63 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201507011.htm
    [6] Chen D J, Wu H L, Li Z S, et al. Effects of the high content La2O3/Y2O3 on microstructure and mechanical properties of Mo-alloy. Powder Metall Technol, 2016, 34(1): 26 doi: 10.3969/j.issn.1001-3784.2016.01.005

    陈大军, 吴护林, 李忠盛, 等. 高含量La2O3/Y2O3对钼合金微观组织与性能的影响. 粉末冶金技术, 2016, 34(1): 26 doi: 10.3969/j.issn.1001-3784.2016.01.005
    [7] Gou J F, Wang Y, Sun J P, et al. Bending strength and wear behavior of Fe–Cr–C–B hardfacing alloys with and without rare earth oxide nanoparticles. Surf Coat Technol, 2017, 311: 113 doi: 10.1016/j.surfcoat.2016.12.104
    [8] Zhong J W, Zhang H, Chen Y X. Effects of Ce and La contents in rare earth elements on microstructure and properties of Cu–0.4Cr–0.2Zr–0.15Mg alloy. Chin J Nonferrous Met, 2016, 26(5): 1092 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201605018.htm

    钟江伟, 张鸿, 陈彦旭. 稀土元素La、Ce含量对Cu–0.4Cr–0.2Zr–0.15Mg合金组织和性能的影响. 中国有色金属学报, 2016, 26(5): 1092 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201605018.htm
    [9] Ramesh C S, Noor Ahmed R, Mujeebu M A, et al. Development and performance analysis of novel cast copper–SiC–Gr hybrid composites. Mater Des, 2009, 30: 1957 doi: 10.1016/j.matdes.2008.09.005
    [10] Akbarpour M R, Salahi E, Alikhani Hesari F, et al. Fabrication, characterization and mechanical properties of hybrid composites of copper using the nanoparticulates of SiC and carbon nanotubes. Mater Sci Eng A, 2013, 572: 83 http://www.sciencedirect.com/science/article/pii/S0921509313001974
    [11] Suryanarayana C, Al-Aqelli N. Mechanically alloyed nanocomposites. Prog Mater Sci, 2013, 58: 383
    [12] Bai L, Ge C C, Shen W P. Spark plasma sintering technology. Powder Metall Technol, 2007, 25(3): 217 doi: 10.3321/j.issn:1001-3784.2007.03.013

    白玲, 葛昌纯, 沈卫平. 放电等离子烧结技术. 粉末冶金技术, 2007, 25(3): 217 doi: 10.3321/j.issn:1001-3784.2007.03.013
    [13] Zhong W J, Ma K D, Wu W Z. Practical Manual for Copper Processing Technology. Beijing: Metallurgical Industry Press, 2007

    钟卫佳, 马可定, 吴维治. 铜加工技术实用手册. 北京: 冶金工业出版社, 2007
    [14] Nachum S, Fleck N A, Ashby M F. The microstructural basis for the mechanical properties and electrical resistivity of nanocrystalline Cu–Al2O3. Mater Sci Eng A, 2010, 527(20): 5065 http://www.sciencedirect.com/science/article/pii/S092150931000482X
    [15] Huang P Y. Theory of Power Metallurgy. 2nd Ed. Beijing: Metallurgical Industry Press, 2004

    黄培云. 粉末冶金原理. 2版. 北京: 冶金工业出版社, 2004
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  307
  • HTML全文浏览量:  149
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-08
  • 刊出日期:  2018-06-27

目录

    /

    返回文章
    返回