生物医用Ti6Al4V合金粉末注射成形工艺研究

刘超 孔祥吉 吴胜文 况春江

刘超, 孔祥吉, 吴胜文, 况春江. 生物医用Ti6Al4V合金粉末注射成形工艺研究[J]. 粉末冶金技术, 2018, 36(3): 217-222, 229. doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.010
引用本文: 刘超, 孔祥吉, 吴胜文, 况春江. 生物医用Ti6Al4V合金粉末注射成形工艺研究[J]. 粉末冶金技术, 2018, 36(3): 217-222, 229. doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.010
LIU Chao, KONG Xiang-ji, WU Sheng-wen, KUANG Chun-jiang. Research on powder injection molding of Ti6Al4V alloys for biomedical application[J]. Powder Metallurgy Technology, 2018, 36(3): 217-222, 229. doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.010
Citation: LIU Chao, KONG Xiang-ji, WU Sheng-wen, KUANG Chun-jiang. Research on powder injection molding of Ti6Al4V alloys for biomedical application[J]. Powder Metallurgy Technology, 2018, 36(3): 217-222, 229. doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.010

生物医用Ti6Al4V合金粉末注射成形工艺研究

doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.010
详细信息
    通讯作者:

    刘超, E-mail: liuchaoatmcn@126.com

  • 中图分类号: TF125.2;TF125.2+2

Research on powder injection molding of Ti6Al4V alloys for biomedical application

More Information
  • 摘要: 钛及钛合金具有高比强度、低弹性模量、优良的耐蚀性和绝佳的生物相容性,但较差的加工性能大大限制了其应用范围。钛及钛合金金属粉末注射成形工艺克服了机加工、模压等传统加工工艺的缺点,结合传统粉末冶金和注塑成型的优势,实现了结构复杂的钛及钛合金产品低成本、大批量近净成形,提高了材料利用率。本文利用水溶性黏结剂和粉末粒度为16 μm和22 μm的商用球形Ti6Al4V合金粉制备了注射料和相应的试样,通过实验确定了气氛热脱黏结合真空烧结的最佳工艺,基于该工艺制备得到了两种注射料的烧结试样。结果表明:粉末粒度为16 μm注射料烧结件杂质含量未能满足外科植入用金属注射成形Ti6Al4V组件标准;粉末粒度为22 μm注射料烧结件物理化学性能如下,极限拉伸强度880 MPa,屈服强度830 MPa,延伸率13.2%,相对密度96.8%,氧质量分数为0.195%,氮质量分数为0.020%,碳质量分数为0.022%,该试样整体性能满足外科植入用金属注射成形Ti6Al4V组件标准。
  • 图  1  Ti6Al4V粉末颗粒微观形貌:(a)D50 = 16 μm(P1粉);(b)D50 = 22 μm(P2粉)

    Figure  1.  Microstructure morphology of Ti6Al4V powder particles: (a) D50 = 16 μm (P1); (b) D50 = 22 μm(P2)

    图  2  Ti6Al4V粉末粒度分布

    Figure  2.  Size distribution of Ti6Al4V powder particles

    图  3  注射料剪切速率–剪切黏度曲线

    Figure  3.  Relationship curves of viscosity and shear rate of M1 and M2 at different injection temperatures

    图  4  注射料M1热重分析曲线

    Figure  4.  TGA curve of the M1 feedstock

    图  5  注射成形试样生坯和热脱黏后显微组织形貌:(a)M1生坯;(b)M1热脱黏;(c)M2生坯;(d)M2热脱黏

    Figure  5.  Microstructures of MIM samples: (a) green part of M1; (b) thermal debinding part of M1; (c) green part of M2;(d) thermal debinding part of M2

    图  6  烧结试样金相图:(a)M1;(b)M2

    Figure  6.  Metallography of sintered samples: (a) M1; (b) M2

    表  1  试样S1~S4工艺条件、杂质元素质量分数及相对密度测试结果

    Table  1.   Process conditions, chemical composition of impurity by mass, and relative density of samples S1~S4

    试样编号 工艺条件 杂质元素质量分数/ % 相对密度/ %
    热脱黏 烧结 O N C
    S1 真空 真空 0.226 0.035 0.042 96.2
    S2 氩气氛 氩气氛 0.210 0.030 0.025 95.8
    S3 氩气氛 真空 0.195 0.020 0.022 97.2
    S4 真空 氩气氛 0.230 0.040 0.050 95.7
    下载: 导出CSV

    表  2  烧结件化学成分与力学性能

    Table  2.   Chemical composition and mechanical properties of sintered samples

    试样 化学成分(质量分数)/ % 极限拉伸强度/ MPa 屈服强度/ MPa 延伸率/ % 相对密度/ %
    O N Fe C H
    M1料烧结件 0.210 0.032 0.215 0.030 0.0008 900 867 12.0 97.6
    M2料烧结件 0.195 0.020 0.200 0.022 0.0010 880 830 13.2 96.8
    ASTM F2885–11 0.200 0.050 0.300 0.080 0.0150 780 680 10.0 96.0
    下载: 导出CSV
  • [1] Cao Y J. Titanium alloys by metal injection molding. Powder Metall Technol, 2001, 19(1): 45 doi: 10.3321/j.issn:1001-3784.2001.01.009

    曹勇家. 金属注射成形钛合金. 粉末冶金技术, 2001, 19(1): 45 doi: 10.3321/j.issn:1001-3784.2001.01.009
    [2] He S W, Ouyang H W, Liu Y, et al. New powder metallurgy technologies of producing titanium alloys. Mater Sci Eng Powder Metall, 2004, 9(1): 29 doi: 10.3969/j.issn.1673-0224.2004.01.005

    何世文, 欧阳鸿武, 刘咏, 等. 制备钛合金件的粉末冶金新技术. 粉末冶金材料科学与工程, 2004, 9(1): 29 doi: 10.3969/j.issn.1673-0224.2004.01.005
    [3] Froes F H S. Advances in titanium metal injection molding. Powder Metall Met Ceram, 2007, 46(5-6): 303 doi: 10.1007/s11106-007-0048-y
    [4] Lu X, Liu C C, Qu X H, Research progress of powder injection molding for titanium alloys. Powder Metall Technol, 2013, 31(2): 139 doi: 10.3969/j.issn.1001-3784.2013.02.011

    路新, 刘程程, 曲选辉. 钛及钛合金粉末注射成形技术研究进展. 粉末冶金技术, 2013, 31(2): 139 doi: 10.3969/j.issn.1001-3784.2013.02.011
    [5] Zhu K P, Zhu J W, Qu H L. Development and application of biomedical Ti alloys abroad. Rare Met Mater Eng, 2012, 41(11): 2058 doi: 10.3969/j.issn.1002-185X.2012.11.039

    朱康平, 祝建雯, 曲恒磊. 国外生物医用钛合金的发展现状. 稀有金属材料与工程, 2012, 41(11): 2058 doi: 10.3969/j.issn.1002-185X.2012.11.039
    [6] Guo S B, Duan B H, He X B, et al. Powder injection molding of pure titanium. Rare Met, 2009, 28(3): 261 doi: 10.1007/s12598-009-0052-0
    [7] Guo S B, Qu X H, He X B, et al. Powder injection molding of Ti–6Al–4V alloy. J Mater Process Technol, 2006, 173(3): 310 doi: 10.1016/j.jmatprotec.2005.12.001
    [8] Weil K S, Nyberg E, Simmons K. A new binder for powder injection molding titanium and other reactive metals. J Mater Process Technol, 2006, 176(1-3): 205 doi: 10.1016/j.jmatprotec.2006.03.154
    [9] Zhou S Y, Cai Y X, Luo T G, et al. Research on preparation and properties of catalytic debinding feedstock for titanium metal injection molding. Powder Metall Technol, 2015, 33(2): 95 doi: 10.3969/j.issn.1001-3784.2015.02.003

    周时宇, 蔡一湘, 罗铁钢, 等. 钛注射成形用催化脱脂型喂料的制备与性能研究. 粉末冶金技术, 2015, 33(2): 95 doi: 10.3969/j.issn.1001-3784.2015.02.003
    [10] Sidambe A T, Figueroa I A, Hamilton H, et al. Improved processing of titanium alloys by metal injection moulding. J Phys Conf Ser, 2011, 26(1): 012005
    [11] Mohamad Nor N H, Muhamad N, Mohd Ihsan A K A, et al. Sintering parameter optimization of Ti–6Al–4V metal injection molding for highest strength using palm stearin binder. Procedia Eng, 2013, 68: 359 doi: 10.1016/j.proeng.2013.12.192
    [12] Ebel T, Blawert C, Willumeit R, et al. Ti–6Al–4V–0.5B — a modified alloy for implants produced by metal injection molding. Adv Eng Mater, 2011, 13(12): B440 doi: 10.1002/adem.201180017
    [13] Thian E S, Loh N H, Khor K A, et al. Ti–6A1–4V/HA composite feedstock for injection molding. Mater Lett, 2002, 56(4): 522 doi: 10.1016/S0167-577X(02)00544-X
    [14] Li Y, Guo Z M, Hao J J. Research on gelcasting of medical porous titanium implants. Powder Metall Ind, 2008, 18(1): 10 doi: 10.3969/j.issn.1006-6543.2008.01.003

    李艳, 郭志猛, 郝俊杰. 医用多孔钛植入材料凝胶注模成形工艺研究. 粉末冶金工业, 2008, 18(1): 10 doi: 10.3969/j.issn.1006-6543.2008.01.003
    [15] Zhang X H, Xiao P A, Liu S H, et al. Study of sintering processes for powder injection molding of TiH2. Powder Metall Technol, 2012, 30(4): 293 doi: 10.3969/j.issn.1001-3784.2012.04.009

    张小虎, 肖平安, 刘素红, 等. TiH2粉末注射成形坯烧结工艺研究. 粉末冶金技术, 2012, 30(4): 293 doi: 10.3969/j.issn.1001-3784.2012.04.009
    [16] Ebel T. Metal injection molding (MIM) of titanium and titanium alloys, Handbook of Metal Injection Molding. UK: Woodhead Publishing, 2012
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  352
  • HTML全文浏览量:  119
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-27
  • 刊出日期:  2018-06-27

目录

    /

    返回文章
    返回