新型镍基粉末高温合金热挤压工艺有限元模拟与实验验证

张明 刘国权 胡本芙 耿笑笑 王浩

张明, 刘国权, 胡本芙, 耿笑笑, 王浩. 新型镍基粉末高温合金热挤压工艺有限元模拟与实验验证[J]. 粉末冶金技术, 2018, 36(3): 223-229. doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.011
引用本文: 张明, 刘国权, 胡本芙, 耿笑笑, 王浩. 新型镍基粉末高温合金热挤压工艺有限元模拟与实验验证[J]. 粉末冶金技术, 2018, 36(3): 223-229. doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.011
ZHANG Ming, LIU Guo-quan, HU Ben-fu, Geng Xiao-xiao, WANG Hao. Finite element simulation and experimental verification on hot extrusion of a novel nickel-base P/M superalloy[J]. Powder Metallurgy Technology, 2018, 36(3): 223-229. doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.011
Citation: ZHANG Ming, LIU Guo-quan, HU Ben-fu, Geng Xiao-xiao, WANG Hao. Finite element simulation and experimental verification on hot extrusion of a novel nickel-base P/M superalloy[J]. Powder Metallurgy Technology, 2018, 36(3): 223-229. doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.011

新型镍基粉末高温合金热挤压工艺有限元模拟与实验验证

doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.011
基金项目: 

国家重点研发计划资助项目 2016YFB0700501

国家自然科学基金资助项目 51571020

详细信息
    通讯作者:

    王浩, E-mail: hwang@ustb.edu.cn

  • 中图分类号: TG132.32;TG113.12;TG113.26

Finite element simulation and experimental verification on hot extrusion of a novel nickel-base P/M superalloy

More Information
  • 摘要: 采用有限元模拟的方法对一种新型镍基粉末高温合金热挤压工艺进行了优化设计,分析讨论了几种主要参数对热挤压结果的影响,并通过热挤压实验验证了有限元模拟的可靠性。结果显示,在热挤压过程中,坯料初始温度对应力和温度影响显著,对应变速率和应变无明显影响;挤压杆速度是调整应力和应变速率的重要参数;采用较小的模角(小于45.0°)可以使应力、应变速率、应变和温度分布的均匀性大幅度提高,有效避免挤压棒材开裂和保证显微组织均匀性。由模拟结果推出的主要热挤压参数为:坯料初始温度1100℃,挤压杆速度40 mm·s-1,模角40.0°。将推荐的参数用于热挤压实验,结果证明了有限元分析结果准确,热挤压参数合理。
  • 图  1  镍基粉末高温合金热挤压工艺模拟:(a)几何模型;(b)挤压杆行进至28 mm;(c)挤压杆行进至78 mm;(d)挤压杆行进至98 mm;(e)挤压杆行进至216 mm

    Figure  1.  Hot extrusion simulation of nickel-base P/M superalloy: (a) geometric model; (b) extrusion ram in 28 mm; (c) extrusion ram in 78 mm; (d) extrusion ram in 98 mm; (e) extrusion ram in 216 mm

    图  2  不同初始温度的坯料在进入模具时应力和应变速率的分布:(a)、(d)1080 ℃;(b)、(e)1100 ℃;(c)、(f)1120 ℃

    Figure  2.  Effects of initial temperatures on the stress and strain rate distribution of billets: (a), (d) 1080 ℃; (b), (e) 1100 ℃; (c), (f) 1120 ℃

    图  3  坯料初始温度对挤压棒材应变和温度分布的影响:(a)、(d)1080 ℃;(b)、(e)1100 ℃;(c)、(f)1120 ℃

    Figure  3.  Effects of initial temperatures on the strain and temperature distribution of extrusion bar: (a), (d) 1080 ℃; (b), (e) 1100 ℃; (c), (f) 1120 ℃

    图  4  不同挤压杆速度下坯料进入模具时应力和应变速率分布:(a)、(d)10 mm/s;(b)、(e)20 mm/s;(c)、(f)60 mm/s

    Figure  4.  Effects of extrusion ram speeds on the stress and strain rate distribution of billets: (a), (d) 10 mm/s; (b), (e) 20 mm/s; (c), (f) 60 mm/s

    图  5  挤压杆速度对挤压棒材应变和温度分布的影响:(a)、(d)10 mm/s;(b)、(e)20 mm/s;(c)、(f)60 mm/s

    Figure  5.  Effects of ram speeds on the strain and temperature distribution of extrusion bar: (a), (d) 10 mm/s; (b), (e) 20 mm/s; (c), (f) 60 mm/s

    图  6  不同模角条件下坯料进入模具时应力和应变速率分布:(a)、(d)33.7°;(b)、(e)45.0°;(c)、(f)56.3°

    Figure  6.  Effects of die angles on the stress and strain rate distribution of billets: (a), (d) 33.7°; (b), (e) 45.0°; (c), (f) 56.3°

    图  7  模角对挤压棒材应变和温度分布的影响:(a)、(d)33.7°;(b)、(e)45.0°;(c)、(f)56.3°

    Figure  7.  Effects of die angles on the strain and temperature distribution of extrusion bar: (a), (d) 33.7°; (b), (e) 45.0°; (c), (f) 56.3°

    图  8  镍基粉末高温合金FGH98热挤压棒材(a),热挤压态合金显微组织(b)和γ′相形貌(c)

    Figure  8.  Macrophotograph (a), microstructures (b), and γ′ precipitate morphologies (c) of the hot extruded FGH98 superalloy

  • [1] Dever J A, Nathal M V, DiCarlo J A. Research on high-temperature aerospace materials at NASA Glenn Research Center. J Aerosp Eng, 2013, 26(2): 500 doi: 10.1061/(ASCE)AS.1943-5525.0000321
    [2] Alniak M O, Bedir F. Hot forging behavior of nickel based superalloys under elevated temperatures. Mater Des, 2010, 31(3): 1588 doi: 10.1016/j.matdes.2009.09.020
    [3] Wilkinson N A. Technological considerations in the forging of superalloy rotor parts. Met Technol, 1977, 4(1): 346 doi: 10.1179/030716977803292637
    [4] Zhang H B, Zhang K F, Jiang S S, et al. Dynamic recrystallization behavior of a γ'-hardened nickel-based superalloy during hot deformation. J Alloys Compd, 2015, 623: 374 doi: 10.1016/j.jallcom.2014.11.056
    [5] Gessinger G H, Bomford M J. Powder metallurgy of superalloys. Int Metall Rev, 1974, 19(1): 51 doi: 10.1179/095066074790136999
    [6] Coyne J E. Microstructural control in titanium-and nickel-base forgings; an overview. Met Technol, 1977, 4(1): 337 doi: 10.1179/030716977803292745
    [7] Ma W B, Liu G Q, Hu B F, et al. Prior particle boundary and its effect on tensile properties of PM FGH96 superalloy. Mater Sci Eng Powder Metall, 2013, 18(1): 1 doi: 10.3969/j.issn.1673-0224.2013.01.003

    马文斌, 刘国权, 胡本芙, 等. 粉末高温合金FGH96中的原始粉末颗粒边界及其对合金拉伸断裂行为的影响. 粉末冶金材料科学与工程, 2013, 18(1): 1 doi: 10.3969/j.issn.1673-0224.2013.01.003
    [8] Liu C Z, Liu F, Huang L, et al. Effect of hot extrusion and heat treatment on microstructure of nickel-base superalloy. Trans Nonferrous Met Soc China, 2014, 24(8): 2544 doi: 10.1016/S1003-6326(14)63381-1
    [9] Chen L, Zhao G Q, Yu J Q, et al. Constitutive analysis of homogenized 7005 aluminum alloy at evaluated temperature for extrusion process. Mater Des, 2015, 66: 129 doi: 10.1016/j.matdes.2014.10.045
    [10] Bai Q, Lin J, Jiang J, et al. A study of direct forging process for powder superalloys. Mater Sci Eng A, 2015, 621: 68 doi: 10.1016/j.msea.2014.10.039
    [11] Zhang M, Liu G Q, Hu B F. Effect of microstructure instability on hot plasticity during thermomechanical processing in PM nickel-based superalloy. Acta Metall Sinica, 2017, 53(11): 1469 doi: 10.11900/0412.1961.2017.00172

    张明, 刘国权, 胡本芙. 镍基粉末高温合金热加工变形过程中显微组织不稳定性对热塑性的影响. 金属学报, 2017, 53(11): 1469 doi: 10.11900/0412.1961.2017.00172
    [12] Semiatin S L, Shank J M, Shiveley A R, et al. The effect of forging variables on the supersolvus heat-treatment response of powder-metallurgy nickel-base superalloys. Metall Mater Trans A, 2014, 45(13): 6231 doi: 10.1007/s11661-014-2572-y
    [13] Wu K, Liu G Q, Hu B F, et al. Characterization of hot deformation behavior of a new Ni–Cr–Co based P/M superalloy. Mater Charact, 2010, 61(3): 330 doi: 10.1016/j.matchar.2009.12.013
    [14] Ning Y Q, Yao Z K, Lei Y Y, et al. Hot deformation behavior of the post-cogging FGH4096 superalloy with fine equiaxed microstructure. Mater Charact, 2011, 62(9): 887 doi: 10.1016/j.matchar.2011.06.004
    [15] He G A, Liu F, Si J Y, et al. Characterization of hot compression behavior of a new HIPed nickel-based P/M superalloy using processing maps. Mater Des, 2015, 87: 256 doi: 10.1016/j.matdes.2015.08.035
    [16] Immarigeon J A, Floyd P H. Microstructural instabilities during superplastic forging of a nickel-base superalloy compact. Metall Trans A, 1981, 12(7): 1177 doi: 10.1007/BF02642331
    [17] Semiatin S L, McClary K E, Rollett A D, et al. Plastic flow and microstructure evolution during thermomechanical processing of a PM nickel-base superalloy. Metall Mater Trans A, 2013, 44(6): 2778 doi: 10.1007/s11661-013-1675-1
    [18] Wu K, Liu G Q, Hu B F, et al. Effect of processing parameters on hot compressive deformation behavior of a new Ni–Cr–Co based P/M superalloy. Mater Sci Eng A, 2011, 528(13-14): 4620 doi: 10.1016/j.msea.2011.02.051
    [19] Zhang B J, Zhao G P, Zhang W Y, et al. Deformation mechanisms and microstructural evolution of γ + γ' duplex aggregates generated during thermomechanical processing of nickel-base superalloys // Proceedings of the 13th International Symposium on Superalloys. Seven Springs, PA, 2016: 487
    [20] Semiatin S L, Kim S L, Zhang F, et al. An investigation of high-temperature precipitation in powder-metallurgy, gamma/gamma-prime nickel-base superalloys. Metall Mater Trans A, 2015, 46(4): 1715 doi: 10.1007/s11661-015-2748-0
  • 加载中
图(8)
计量
  • 文章访问数:  304
  • HTML全文浏览量:  135
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-19
  • 刊出日期:  2018-06-27

目录

    /

    返回文章
    返回