粉末冶金结合热轧制备高硼铝合金组织与性能研究

元琳琳 韩鹏 陈晓宇 黄晓猛

元琳琳, 韩鹏, 陈晓宇, 黄晓猛. 粉末冶金结合热轧制备高硼铝合金组织与性能研究[J]. 粉末冶金技术, 2018, 36(4): 249-255. doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.002
引用本文: 元琳琳, 韩鹏, 陈晓宇, 黄晓猛. 粉末冶金结合热轧制备高硼铝合金组织与性能研究[J]. 粉末冶金技术, 2018, 36(4): 249-255. doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.002
YUAN Lin-lin, HAN Peng, CHEN Xiao-yu, HUANG Xiao-meng. Study on microstructures and properties of high boron aluminum alloy prepared by powder metallurgy combined with hot rolling[J]. Powder Metallurgy Technology, 2018, 36(4): 249-255. doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.002
Citation: YUAN Lin-lin, HAN Peng, CHEN Xiao-yu, HUANG Xiao-meng. Study on microstructures and properties of high boron aluminum alloy prepared by powder metallurgy combined with hot rolling[J]. Powder Metallurgy Technology, 2018, 36(4): 249-255. doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.002

粉末冶金结合热轧制备高硼铝合金组织与性能研究

doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.002
详细信息
    通讯作者:

    元琳琳, E-mail: 333sunnny333@163.com

  • 中图分类号: TG146.2

Study on microstructures and properties of high boron aluminum alloy prepared by powder metallurgy combined with hot rolling

More Information
  • 摘要: 采用粉末冶金结合热轧成形工艺制备含硼质量分数为7%与12%的中子屏蔽用高硼铝合金(Al-7% B与Al-12% B),并对不同工艺条件下铝硼合金的组织与性能进行研究。结果表明:在机械球磨5 min+放电等离子烧结条件下,Al-7% B合金中AlB2体积分数高于Al-12% B合金,且分布更加均匀。放电等离子烧结后进行热轧有利于提高试样的相对密度,减少硼粉团聚。在450℃固溶处理2 h,Al-7% B合金试样的拉伸强度和屈服强度达到峰值,分别为145.7 MPa和99.4 MPa。由10B面密度理论计算结果可知,厚度相近时,热轧后高硼铝合金10B面密度均可达到BoralTM水平。
  • 图  1  烧结体试样激光扫描组织形貌:(a)Al–7%B;(b)Al–12%B

    Figure  1.  Laser scanning microstructures of sintered compacts: (a) Al–7%B; (b) Al–12%B

    图  2  Al–7%B烧结试样显微组织:(a)激光显微组织形貌;(b)3D显微组织形貌

    Figure  2.  Microstructures of the sintered Al–7%B compacts: (a) laser scanning image; (b) 3D image

    图  3  Al–12%B烧结试样显微组织:(a)激光显微组织形貌;(b)3D显微组织形貌

    Figure  3.  Microstructures of the sintered Al–12%B compacts: (a) laser scanning image; (b) 3D image

    图  4  Al–7%B烧结试样微观结构:(a)扫描电子显微形貌;(b)能谱成分面扫描结果

    Figure  4.  Microstructures of the sintered Al–7%B alloys: (a) SEM; (b) surface scanning in EDS

    图  5  Al–12%B烧结试样微观结构:(a)电子扫描显微形貌;(b)能谱成分面扫描结果

    Figure  5.  Microstructures of the sintered Al–12%B alloys: (a) SEM; (b) surface scanning in EDS

    图  6  烧结试样X射线衍射图谱:(a)Al–7%B;(b)Al–12%B

    Figure  6.  XRD patterns of the sintered specimens: (a) Al–7%B; (b) Al–12%B

    图  7  Al–7%B热轧试样显微组织:(a)激光显微组织形貌;(b)3D显微组织形貌

    Figure  7.  Microstructures of the hot–rolled Al–7%B compacts: (a) laser scanning image; (b) 3D image

    图  8  Al–12%B热轧试样显微组织:(a)激光显微组织形貌;(b)3D显微组织形貌

    Figure  8.  Microstructures of the hot–rolled Al–12%B compacts: (a) laser scanning image; (b) 3D image

    图  9  高硼铝合金固溶组织激光显微图片:(a)Al–7%B;(b)Al–12%B

    Figure  9.  Laser scanning microstructures of solution treated specimens: (a) Al–7%B; (b) Al–12%B

    表  1  铝合金粉末与烧结体物理性能

    Table  1.   Physical properties of powders and sintered Al alloy specimens

    试样 厚度/ cm 密度/ (g·cm-3) 相对密度/ % 含氧质量分数/ %
    Al–7%B粉末 1.92
    Al–7%B烧结体 0.415 2.268 85.29 1.47
    Al–12%B粉末 1.79
    Al–12%B烧结体 0.415 2.261 85.31 1.35
    BoralTM 0.300 2.520 93.00
    下载: 导出CSV

    表  2  纯铝与高硼铝合金的力学性能

    Table  2.   Mechanical properties of pure Al and high boron aluminum alloys

    试样 拉伸强度/ MPa 屈服强度/ MPa 伸长率/ %
    纯Al 55.8±2.1 15.6±2.2 24.3±0.9
    烧结Al–7%B 79.6±3.8 32.5±2.6 7.8±0.6
    热轧Al–7%B 99.9±3.2 60.6±3.0 6.7±0.7
    热处理Al–7%B 145.7±4.1 99.4±3.9 3.7±0.8
    烧结Al–12%B 36.4±2.7 18.5±2.3 9.3±0.6
    热轧Al–12%B 41.6±2.4 24.7±2.0 11.1±0.7
    热处理Al–12%B 47.4±2.3 31.2±2.6 8.4±0.8
    BoralTM 68.4 0.1
    下载: 导出CSV

    表  3  铝合金面密度

    Table  3.   Areal densities of aluminum alloys (10B)

    试样 厚度/ cm 面密度/ (g·cm–2)
    热轧Al–7%B 0.202 0.06
    热轧Al–12%B 0.185 0.10
    BoralTM 0.178~1.12 0.005~0.120
    下载: 导出CSV
  • [1] Han Y, Chen F G, Yu W Y, et al. Investigation of the research status of neutron shielding materials. Mater Rev, 2015, 29(Suppl 2): 483 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2015S2120.htm

    韩毅, 陈法国, 于伟跃, 等. 中子屏蔽材料研究现状. 材料导报, 2015, 29(增刊2): 483 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2015S2120.htm
    [2] Mann K S. γ–Ray shielding behaviors of some nuclear engineering materials. Nucl Eng Technol, 2017, 49(4): 792 doi: 10.1016/j.net.2016.12.016
    [3] Chen S D, Chen J C. Study reality and development prospect of lead-based nuclear shielding material. Mater Rev, 2011, 25(7): 58 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201113014.htm

    陈守东, 陈敬超. 铅基核屏蔽材料的研究现状及发展前景展望. 材料导报, 2011, 25(7): 58 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201113014.htm
    [4] Wu Y C, Wang M H, Huang Q Y, et al. Development status and prospects of lead-based reactors. Nucl Sci Eng, 2015, 35(2): 213 doi: 10.3969/j.issn.0258-0918.2015.02.004

    吴宜灿, 王明煌, 黄群英, 等. 铅基反应堆研究现状与发展前景. 核科学与工程, 2015, 35(2): 213 doi: 10.3969/j.issn.0258-0918.2015.02.004
    [5] Tian J, Zhu B B, Wang Y, et al. Current situation and development trend of radiation cement. Environ Eng, 2014(7): 119 https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201407027.htm

    田键, 朱兵兵, 汪洋, 等. 防辐射水泥的现状及发展趋势. 环境工程, 2014(7): 119 https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201407027.htm
    [6] Yuan Q S. The Effect of Zr, Cr, Ni on the Microstructure of High Boron Steel[Dissertation]. Chengdu: Xihua University, 2009

    袁亲松. Zr、Cr、Ni对高硼钢组织的影响[学位论文]. 成都: 西华大学, 2009
    [7] Gong X, Wang H Q, Fu M M, et al. Research development of high-strength Al–Cu–Mn series aluminum alloy used for aviation and aerospace. Hot Working Technol, 2015, 44(22): 6 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201522002.htm

    龚习, 王恒强, 付敏敏, 等. 航空航天用Al–Cu–Mn系高强铝合金的研究进展. 热加工工艺, 2015, 44(22): 6 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201522002.htm
    [8] Niu Z W, Huang J H, Xu F Z, et al. Current research status and prospect of brazing filler metals for aluminum and aluminum alloys. Chin J Nonferrous Met, 2016, 26(1): 77 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201601010.htm

    牛志伟, 黄继华, 许方钊, 等. 铝及铝合金钎焊用硬钎料的研究现状与展望. 中国有色金属学报, 2016, 26(1): 77 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201601010.htm
    [9] Sun Y, Ren J, Zhang Y S. Effect of solution treatment and two-step aging on microstructure and hardness for 7050 aluminum alloy. Heat Treat Met, 2016, 41(3): 25 doi: 10.3969/j.issn.1673-4971.2016.03.007

    孙燕, 任洁, 张艳姝. 固溶处理及双级时效对7050铝合金微观组织和硬度的影响. 金属热处理, 2016, 41(3): 25 doi: 10.3969/j.issn.1673-4971.2016.03.007
    [10] Yang S J, Yang X. Progress in high-strength aluminum alloy research. Powder Metall Ind, 2010, 20(5): 47 doi: 10.3969/j.issn.1006-6543.2010.05.010

    杨守杰, 杨霞. 高强度铝合金的研究进展. 粉末冶金工业, 2010, 20(5): 47 doi: 10.3969/j.issn.1006-6543.2010.05.010
    [11] Yu S, Lang L H, Wang G, et al. Research on numerical simulation of 2A12 aluminum alloy manufactured by hot isostatic pressing. Powder Metall Ind, 2016, 26(2): 17 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201602006.htm

    喻思, 郎利辉, 王刚, 等. 热等静压成形2A12铝合金粉末的数值模拟研究. 粉末冶金工业, 2016, 26(2): 17 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201602006.htm
    [12] Cui J H, Cai J P, Jia C C. Pitting corrosion of high strength aluminum alloys in salt spray test. J Chin Soc Corros Prot, 2010, 30(3): 197 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF201003006.htm

    崔继红, 蔡建平, 贾成厂. 盐雾环境下高强度铝合金的点蚀行为. 中国腐蚀与防护学报, 2010, 30(3): 197 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF201003006.htm
    [13] Machiels A, Lambert R. Handbook on Neutron Absorber Materials for Spent Nuclear Fuel Applications. Palo Alto: Electric Power Research Institute, 2005
    [14] Ni Q L, Zheng W J, Song Z G, et al. Effect of boron content on microstructure and property of boron stainless steel. J Iron Steel Res, 2013, 25(6): 53 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201306011.htm

    佴启亮, 郑文杰, 宋志刚, 等. 硼含量对含硼不锈钢组织和性能的影响. 钢铁研究学报, 2013, 25(6): 53 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201306011.htm
    [15] Fan T, Liu B W, Sun Y R, et al. Study on wear resistance of Al2O3 particle reinforced Al matrix composites. Powder Metall Technol, 2015, 33(3): 186 doi: 10.3969/j.issn.1001-3784.2015.03.006

    范涛, 刘博文, 孙艳荣, 等. Al2O3颗粒增强铝基复合材料的耐磨性研究. 粉末冶金技术, 2015, 33(3): 186 doi: 10.3969/j.issn.1001-3784.2015.03.006
    [16] Roy M N, Sinha A. Viscous synergy and antagonism and isentropic compressibility of ternary mixtures containing 1, 3-dioxolane, water and monoalkanols at 303.15 K. Fluid Phase Equilib, 2006, 243(1-2): 133 doi: 10.1016/j.fluid.2006.02.023
    [17] Gan Y N, Lim Y S, Qiao L. Combustion of nanofluid fuels with the addition of boron and iron particles at dilute and dense concentrations. Combust Flame, 2012, 159(4): 1732 doi: 10.1016/j.combustflame.2011.12.008
    [18] Guo L G, Song W L, Xie C S, et al. Characterization and thermal properties of carbon-coated aluminum nanopowders prepared by laser-induction complex heating in methane. Mater Lett, 2007, 61(14-15): 3211 doi: 10.1016/j.matlet.2006.11.035
    [19] Kwon H, Estili M, Takagi K, et al. Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon, 2009, 47(3): 570 doi: 10.1016/j.carbon.2008.10.041
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  365
  • HTML全文浏览量:  135
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-14
  • 刊出日期:  2018-08-27

目录

    /

    返回文章
    返回