冷模压制Ti-6Al-4V粉末的修正Drucker-Prager Cap本构模型

孙世民 黄尚宇 周梦成 雷雨 王斌

孙世民, 黄尚宇, 周梦成, 雷雨, 王斌. 冷模压制Ti-6Al-4V粉末的修正Drucker-Prager Cap本构模型[J]. 粉末冶金技术, 2018, 36(4): 261-269. doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.004
引用本文: 孙世民, 黄尚宇, 周梦成, 雷雨, 王斌. 冷模压制Ti-6Al-4V粉末的修正Drucker-Prager Cap本构模型[J]. 粉末冶金技术, 2018, 36(4): 261-269. doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.004
SUN Shi-min, HUANG Shang-yu, ZHOU Meng-cheng, LEI Yu, WANG Bin. Modified Drucker-Prager Cap model of Ti-6Al-4V powders for cold die compaction[J]. Powder Metallurgy Technology, 2018, 36(4): 261-269. doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.004
Citation: SUN Shi-min, HUANG Shang-yu, ZHOU Meng-cheng, LEI Yu, WANG Bin. Modified Drucker-Prager Cap model of Ti-6Al-4V powders for cold die compaction[J]. Powder Metallurgy Technology, 2018, 36(4): 261-269. doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.004

冷模压制Ti-6Al-4V粉末的修正Drucker-Prager Cap本构模型

doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.004
基金项目: 

国家自然科学基金资助项目 51475345

详细信息
    通讯作者:

    黄尚宇, E-mail: huangshy@whut.edu.cn

  • 中图分类号: TF121

Modified Drucker-Prager Cap model of Ti-6Al-4V powders for cold die compaction

More Information
  • 摘要: 通过单轴压缩实验、径向压缩(巴西圆盘)实验和冷模模压实验建立了基于密度相关修正Drucker-Prager Cap(DPC)的Ti-6Al-4V粉末压制本构模型,利用ABAQUS有限元仿真软件的二次开发用户子程序USDFLD对该本构模型进行了模拟验证。综合考虑压制过程中实验装置变形对实验数据的影响,通过空压校正实验控制实验误差,建立了更加准确的修正DPC模型。结果表明:修正DPC本构模型可很好地应用于Ti-6Al-4V粉末压制过程的仿真模拟;当上模冲压力较小时(< 50 MPa),模壁摩擦系数随上模冲压力的增加逐渐减小,当上模冲压力较大时(>50 MPa),模壁摩擦系数随上模冲压力的增加而基本趋于稳定。
  • 图  1  压坯压缩强度测量实验:(a)单轴压缩实验;(b)巴西圆盘实验

    Figure  1.  Compression strength tests of the powder compacts: (a) uniaxial compression test; (b) diametrical compression test

    图  2  模压实验示意图

    Figure  2.  Schematic diagram of die compaction apparatus

    图  3  修正DPC模型及模压实验加载路径

    Figure  3.  Modified DPC model and the loading path of die compaction test

    图  4  剪切破坏面确定实验:(1)单轴拉伸实验;(2)剪切实验;(3)巴西圆盘实验;(4)单轴压缩实验

    Figure  4.  Determination of shear failure surface: (1) uniaxial tension test; (2) pure shear test; (3) diametrical compression test; (4) uniaxial compression test

    图  5  压坯压缩强度与相对密度关系:(a)单轴压缩强度;(b)径向压缩强度

    Figure  5.  Compression strength change with relative density of powder compacts: (a) axial compression strength; (b) radial tensile strength

    图  6  空压校正实验:(a)整个模压装置的力–位移曲线;(b)模压实验原始数据与修正数据的力–位移曲线

    Figure  6.  Die compaction tests without powders: (a) force–displacement response of the whole testing system; (b) force–displacement curves with the raw and corrected data for powder compact

    图  7  修正DPC模型参数、弹性参数与相对密度的关系以及摩擦系数与上模冲压力的关系:(a)内聚力,d;(b)摩擦角,β;(c)演化参数,pa;(d)静态屈服应力,pb;(e)偏心距,R;(f)弹性模量,E;(g)泊松比,υ;(h)摩擦系数,μ

    Figure  7.  Relationship of modified DPC model parameters, elastic properties, and relative density and the variation of friction coefficient with top punch pressure: (a) cohesion, d; (b) friction angle, β; (c) evolution parameter, pa; (d) hydrostatic yield stress, pb; (e) cap excentricity, R; (f) Young's modulus, E; (g) Poisson's ratio, υ; (h) friction coefficient, μ

    图  8  有限元模型及模拟实验:(a)组装模型;(b)划分网格模型;(c)加载完毕模型;(d)卸载完毕模型

    Figure  8.  Finite element model and simulation experiment: (a) assembled model; (b) model with meshes; (c) model after loading; (d) model after unloading

    图  9  生坯相对密度分布云图:(a)加载完毕;(b)卸载完毕

    Figure  9.  Relative density distribution of green: (a) after loading; (b) after unloading

    图  10  模拟与实验结果比较

    Figure  10.  Comparison between the simulation and experimental results

    表  1  Ti–6Al–4V粉末化学成分表(质量分数)

    Table  1.   Chemical composition of Ti–6Al–4V powders  %

    Al V Fe C N H O Ti
    6.00 3.90 0.05 0.02 0.180 0.039 0.20 余量
    下载: 导出CSV
  • [1] Wei W H, Wang L Z, Chen T, et al. Study on the flow properties of Ti–6Al–4V powders prepared by radio-frequency plasma spheroidization. Adv Powder Technol, 2017, 28(9): 2431 doi: 10.1016/j.apt.2017.06.025
    [2] Liu C, Kong X J, Wu S W, et al. Research progress on metal injection molding of titanium and titanium alloys. Powder Metall Technol, 2017, 35(2): 150 doi: 10.3969/j.issn.1001-3784.2017.02.012

    刘超, 孔祥吉, 吴胜文, 等. 钛及钛合金金属粉末注射成形技术的研究进展. 粉末冶金技术, 2017, 35(2): 150 doi: 10.3969/j.issn.1001-3784.2017.02.012
    [3] Huang B. Research on Difficult-to-Cut Materials Processing Technology Based on Titanium [Dissertation]. Nanjing: Nanjing University of Science and Technology, 2015

    黄蓓. 基于钛合金的难加工材料切削加工工艺研究[学位论文]. 南京: 南京理工大学, 2015
    [4] Wang H Y, Guo Z M, Lu B X, et al. Industrialized production technology of powder metallurgy (PM) titanium and titanium alloy. Titanium Ind Prog, 2017, 34(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-TGYJ201701001.htm

    王海英, 郭志猛, 芦博欣, 等. 钛合金粉末冶金工业化生产技术. 钛工业进展, 2017, 34(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-TGYJ201701001.htm
    [5] Wang J, Li C X, Ruan X Y. Modeling approach for numerical simulation of powdered metal compacting process. Mech Sci Technol, 2000, 19(3): 436 doi: 10.3321/j.issn:1003-8728.2000.03.034

    汪俊, 李从心, 阮雪榆. 粉末金属压制过程数值模拟建模方法. 机械科学与技术, 2000, 19(3): 436 doi: 10.3321/j.issn:1003-8728.2000.03.034
    [6] Biswas K. Comparison of various plasticity models for metal powder compaction processes. J Mater Process Technol, 2005, 166(1): 107 doi: 10.1016/j.jmatprotec.2004.08.006
    [7] Bierwisch C, Kraft T, Riedel H, et al. Die filling optimization using three-dimensional discrete element modeling. Powder Technol, 2009, 196(2): 169 doi: 10.1016/j.powtec.2009.07.018
    [8] Yan S W, Huang S Y, Hu J H, et al. Development and application of numerical simulation in powder metallurgy manufacturing. Powder Metall Technol, 2017, 35(1): 57 doi: 10.3969/j.issn.1001-3784.2017.01.010

    颜士伟, 黄尚宇, 胡建华, 等. 数值仿真技术在粉末冶金零件制造中的应用及研究进展. 粉末冶金技术, 2017, 35(1): 57 doi: 10.3969/j.issn.1001-3784.2017.01.010
    [9] Drucker D C, Gibson R E, Henkel D J. Soil mechanics and work hardening theories of plasticity. Am Soc Civ Eng, 1957, 122: 338 doi: 10.1061/TACEAT.0007430
    [10] Sinka I C, Cunningham J C, Zavaliangos A. The effect of wall friction in the compaction of pharmaceutical tablets with curved faces: a validation study of the Drucker–Prager Cap model. Powder Technol, 2003, 133(1-3): 33 doi: 10.1016/S0032-5910(03)00094-9
    [11] Reiterer M, Kraft T, Janosovits U, et al. Finite element simulation of cold isostatic pressing and sintering of SiC components. Ceram Int, 2004, 30(2): 177 doi: 10.1016/S0272-8842(03)00086-5
    [12] Zhang B S, Jain M, Zhao C H, et al. Experimental calibration of density-dependent modified Drucker–Prager/Cap model using an instrumented cubic die for powder compact. Powder Technol, 2010, 204(1): 27 doi: 10.1016/j.powtec.2010.07.003
    [13] Hu J Z, Li D R, Zhou B, et al. Study on numerical simulation of W–Cu20 powder rolling based on Drucker–Prager/Cap model. Powder Metall Technol, 2017, 35(4): 249 doi: 10.19591/j.cnki.cn11-1974/tf.2017.04.002

    胡建召, 李达人, 周冰, 等. 基于Drucker–Prager/Cap模型的W–Cu20粉末轧制数值模拟. 粉末冶金技术, 2017, 35(4): 249 doi: 10.19591/j.cnki.cn11-1974/tf.2017.04.002
    [14] Zhou M C, Huang S Y, Hu J H, et al. A density-dependent modified Drucker–Prager Cap model for die compaction of Ag57.6–Cu22.4–Sn10–In10 mixed metal powders. Powder Technol, 2017, 305: 183 doi: 10.1016/j.powtec.2016.09.061
    [15] Zhou R. Study on Residual Stress and Cracks Damage of Powder Metallurgy Compacts [Dissertation]. Tianjin: Tianjin University, 2013

    周蕊. 粉末冶金压坯残余应力与裂纹损伤研究[学位论文]. 天津: 天津大学, 2013
    [16] Lamarche K, Buckley D, Hartley R, et al. Assessing materials' tablet compaction properties using the Drucker–Prager Cap model. Powder Technol, 2014, 267: 208 doi: 10.1016/j.powtec.2014.06.050
    [17] Almanstötter J. A modified Drucker–Prager Cap model for finite element simulation of doped tungsten powder compaction. Int J Refract Met Hard Mater, 2015, 50: 290 doi: 10.1016/j.ijrmhm.2015.02.005
    [18] Han L H, Elliott J A, Bentham A C, et al. A modified Drucker–Prager Cap model for die compaction simulation of pharmaceutical powders. Int J Solids Struct, 2008, 45(10): 3088 doi: 10.1016/j.ijsolstr.2008.01.024
    [19] Zhou M C, Huang S Y, Hu J H, et al. Experiment and finite element analysis of compaction densification mechanism of Ag–Cu–Sn–In mixed metal powder. Powder Technol, 2017, 313: 68 doi: 10.1016/j.powtec.2017.03.015
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  434
  • HTML全文浏览量:  184
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-15
  • 刊出日期:  2018-08-27

目录

    /

    返回文章
    返回