铁基粉末流动温压工艺中热脱脂动力学分析

杨义 倪东惠

杨义, 倪东惠. 铁基粉末流动温压工艺中热脱脂动力学分析[J]. 粉末冶金技术, 2018, 36(4): 297-302. doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.010
引用本文: 杨义, 倪东惠. 铁基粉末流动温压工艺中热脱脂动力学分析[J]. 粉末冶金技术, 2018, 36(4): 297-302. doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.010
YANG Yi, NI Dong-hui. Analysis on thermal debinding kinetics of iron-based powders by warm flow compaction[J]. Powder Metallurgy Technology, 2018, 36(4): 297-302. doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.010
Citation: YANG Yi, NI Dong-hui. Analysis on thermal debinding kinetics of iron-based powders by warm flow compaction[J]. Powder Metallurgy Technology, 2018, 36(4): 297-302. doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.010

铁基粉末流动温压工艺中热脱脂动力学分析

doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.010
基金项目: 

湖北省教育厅科学研究项目资助项目 B2017165

详细信息
    通讯作者:

    杨义, E-mail: ygyi2009@163.com

  • 中图分类号: TF124.1

Analysis on thermal debinding kinetics of iron-based powders by warm flow compaction

More Information
  • 摘要: 采用流动温压工艺,以铁基粉末为原料、石蜡基聚合物为黏结剂成功制备出十字坯试样;在不同热脱脂速率下脱除聚合物黏结剂,利用热重分析(thermogravimetric analysis,TGA)法研究黏结剂在N2气氛下的热脱脂行为,采用微分法计算脱脂过程动力学相关参数,改进脱脂工艺;借助优化后的脱脂工艺对压坯进行脱脂,并在1300℃烧结获得烧结坯,对烧结坯的烧结收缩率、密度分布、微观组织进行研究。结果表明:聚合物黏结剂的脱除共有2个阶段,激活能为31.3~72.7 kJ·mol-1,指前因子为0.96×106~1.14×1010 min-1;脱脂第1阶段的激活能整体上均低于第2阶段的激活能,说明脱脂第1阶段中的低分子组元更易脱除,保证脱脂质量的关键因素是控制第1阶段的升温速率。
  • 图  1  热重–微商热重分析曲线:(a)纯黏结剂;(b)含质量分数6%黏结剂的生坯

    Figure  1.  TG–DTG curves: (a) binder; (b) green compaction with 6% binder by mass

    图  2  不同升温速率下生坯的微商热重曲线

    Figure  2.  DTG curves of green compaction at different heating rates

    图  3  Arrhenius方程ln[k(T)]与T-1关系:(a)第1阶段470~660 ℃;(b)第2阶段660~760 ℃

    Figure  3.  Plot of ln[k(T)] and T-1: (a) 470~660 ℃ in stage 1; (b) 660~760 ℃ in stage 2

    图  4  脱脂缺陷:(a)裂纹;(b)鼓泡

    Figure  4.  Defects induced by debinding: (a) cracks; (b) blisters

    图  5  优化后热脱脂工艺

    Figure  5.  Optimized debinding process

    图  6  烧结坯不同部位金相组织:(a)轴向上端;(b)横向左端

    Figure  6.  Microstructures of sintered parts at different location: (a) axial upper-side; (b) lateral left-side

    图  7  烧结坯的密度分布(单位:g·cm-3

    Figure  7.  Density distribution of sintered parts (unit in g·cm-3)

    表  1  实验用金属粉末的成分与粒度

    Table  1.   Composition and particle sizes of the raw powders

    粉末 粒度/μm 质量分数/%
    水雾化铁粉 ≤147 78.5
    羟基铁粉 5 20.0
    还原钼粉 ≤75 0.5
    石墨粉 ≤75 1.0
    下载: 导出CSV

    表  2  黏结剂组元热解温度和成分

    Table  2.   Thermal characteristic and composition of binder components

    组元 熔点/ ℃ 热分解温度/ ℃ 质量分数/ %
    聚酰胺(PA) 170.6 316.6~500.5 65.0
    聚乙烯蜡(PE) 113.1 192.3~480.9 17.5
    普通石蜡(PW) 64.7 180.1~307.0 17.5
    下载: 导出CSV

    表  3  生坯脱脂过程动力学参数

    Table  3.   Kinetic parameters of green compact with diffeent heating rates

    热解阶段 升温速率,β/(℃·min-1) 激活能,Ea/(kJ·mol-1) 指前因子,A / min-1 拟合系数,r2
    第1阶段(低温阶段) 2 44.3 5.82×106 0.9954
    5 31.3 0.96×106 0.9970
    8 34.8 3.23×106 0.9916
    11 31.6 1.94×106 0.9954
    第2阶段(高温阶段) 5 56.3 1.45×108 0.9914
    8 70.2 4.65×109 0.9937
    11 72.7 1.14×1010 0.9938
    下载: 导出CSV

    表  4  生坯密度、烧结坯密度和烧结收缩率

    Table  4.   Green density, sintered part density, and sintered part shrinkages

    生坯密度/ (g·cm-3) 烧结密度/ (g·cm-3) 烧结收缩率/%
    轴向方向 轴向直径 横向方向 横向直径
    5.971 6.720 -5.83 -0.27 -6.10 -0.31
    下载: 导出CSV
  • [1] Sokolowski P, Milbrath A, Vitti D, et al. Industrial performance of a new lubricant for manufacturing PM gears. Met Powder Rep, 2016, 71(3): 180 doi: 10.1016/j.mprp.2015.12.002
    [2] Xiao Z Y, Ke M Y, Li Y Y, et al. New development of warm compaction—Warm flow compaction. Powder Metall Ind, 2002, 12(5): 28 doi: 10.3969/j.issn.1006-6543.2002.05.005

    肖志瑜, 柯美元, 李元元等. 温压工艺最新进展—流动温压技术. 粉末冶金工业, 2002, 12(5): 28 doi: 10.3969/j.issn.1006-6543.2002.05.005
    [3] St-Laurent S, Thomas Y, Azzi L. High performance lubricants for demanding pm applications. Powder Metall Technol, 2014, 32(3): 226 http://pmt.ustb.edu.cn/article/id/fmyjjs201403013

    St-Laurent S, Thomas Y, Azzi L. 粉末冶金零件需要的高性能润滑剂. 粉末冶金技术, 2014, 32(3): 226 http://pmt.ustb.edu.cn/article/id/fmyjjs201403013
    [4] St-Laurent S, Chagnon F. Key parameters for warm compaction of high density materials. Powder Metall Ind, 2012, 22(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201201002.htm

    St-Laurent S, Chagnon F. 用温压制造高密度材料的关键参数. 粉末冶金工业, 2012, 22(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201201002.htm
    [5] Xiao Z Y, Zhang J H, Shao M, et al. Characteristics of warm flow compaction forming of metallic powder and its technological problem analysis. China Mech Eng, 2005, 16(3): 257 doi: 10.3321/j.issn:1004-132X.2005.03.020

    肖志瑜, 张菊红, 邵明, 等. 金属粉末流动温压成形的特点及其技术问题分析. 中国机械工程, 2005, 16(3): 257 doi: 10.3321/j.issn:1004-132X.2005.03.020
    [6] Liu C Y, Ji G S, Meng J H. Debinding process of superfine 316L stainless steel powder preform fabricated by injection molding. J Mater Sci Eng, 2013, 31(3): 451 https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201303028.htm

    刘长洋, 季根顺, 孟军虎. 超细316不锈钢粉末注射成形的脱脂工艺. 材料科学与工程学报, 2013, 31(3): 451 https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201303028.htm
    [7] Zhao L G, Li Y M. Thermal debinding behavior of the initial stage in MIM. Mater Sci Eng Powder Metall, 2002, 7(3): 175 doi: 10.3969/j.issn.1673-0224.2002.03.003

    赵利刚, 李益民. MIM热脱脂初始阶段行为研究. 粉末冶金材料科学与工程, 2002, 7(3): 175 doi: 10.3969/j.issn.1673-0224.2002.03.003
    [8] Zhou S Y, Cai Y X, Luo T G, et al. Research on preparation and properties of catalytic debinding feedstock for titanium metal injection molding. Powder Metall Technol, 2015, 33(2): 95 doi: 10.3969/j.issn.1001-3784.2015.02.003

    周时宇, 蔡一湘, 罗铁钢, 等. 钛注射成形用催化脱脂型喂料的制备与性能研究. 粉末冶金技术, 2015, 33(2): 95 doi: 10.3969/j.issn.1001-3784.2015.02.003
    [9] Li Y, Wang X Q, Han Y L. Technique of debinding wax-based binder for powder injection molding. Mater Sci Eng Powder Metall, 2011, 16(1): 150 doi: 10.3969/j.issn.1673-0224.2011.01.025

    李永, 王兴庆, 韩义林. 粉末注射成形石蜡基成形剂的脱除工艺. 粉末冶金材料科学与工程, 2011, 16(1): 150 doi: 10.3969/j.issn.1673-0224.2011.01.025
    [10] Chen H, Ji X L, Liu B, et al. Catalytic debinding for 304L powder injection molding. Powder Metall Technol, 2016, 34(6): 440 doi: 10.3969/j.issn.1001-3784.2016.06.008

    陈慧, 敬小龙, 刘兵, 等. 304不锈钢粉末注射成形研究. 粉末冶金技术, 2016, 34(6): 440 doi: 10.3969/j.issn.1001-3784.2016.06.008
    [11] Zheng J J, Ni D H, Hu C X, et al. A Study on fabrication and sintering process of cross-shaped part formed by warm flow compaction. Powder Metall Ind, 2010, 20(1): 32 doi: 10.3969/j.issn.1006-6543.2010.01.006

    郑军君, 倪东惠, 胡昌旭, 等. 流动温压成形"十"字形零件及其烧结工艺的研究. 粉末冶金工业, 2010, 20(1): 32 doi: 10.3969/j.issn.1006-6543.2010.01.006
    [12] Rath J, Staudinger G. Cracking reactions of tar from pyrolysis of spruce wood. Fuel, 2001, 80(10): 1379 doi: 10.1016/S0016-2361(01)00016-3
    [13] Enneti R K, Shivashankar T S, Park S J, et al. Master debinding curves for solvent extraction of binders in powder injection molding. Powder Technol, 2012, 228: 14 doi: 10.1016/j.powtec.2012.04.027
    [14] Jee C S Y, Guo Z X, Stoliarov S I, et al. Experimental and molecular dynamics studies of the thermal decomposition of a polyisobutylene binder. Acta Mater, 2006, 54: 4803 doi: 10.1016/j.actamat.2006.06.014
    [15] Alshehri S M, Al-Fawaz A, Ahamad T. Thermal kinetic parameters and evolved gas analysis (TG-FTIR-MS) for thiourea-formaldehyde based polymer metal complexes. J Anal Appl Pyrolysis, 2013, 101: 215 doi: 10.1016/j.jaap.2013.01.004
    [16] Yuan H Y, Jia C C, Zhang X X, et al. Thermal degradation mechanism and kinetics of aluminum-copper green bodies prepared by gelcasting. Chin J Eng, 2016, 38(1): 102 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201601014.htm

    袁海英, 贾成厂, 张新新, 等. 凝胶注模制备的铝铜胚体脱脂过程及动力学. 工程科学学报, 2016, 38(1): 102 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201601014.htm
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  67
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-22
  • 刊出日期:  2018-08-27

目录

    /

    返回文章
    返回