半固态烧结制备石墨烯/7075铝基复合材料与性能研究

杨斌 杜更新 程福来 贾天琪 安家托 赵紫薇 肖亚姣 张再苗

杨斌, 杜更新, 程福来, 贾天琪, 安家托, 赵紫薇, 肖亚姣, 张再苗. 半固态烧结制备石墨烯/7075铝基复合材料与性能研究[J]. 粉末冶金技术, 2018, 36(4): 303-307. doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.011
引用本文: 杨斌, 杜更新, 程福来, 贾天琪, 安家托, 赵紫薇, 肖亚姣, 张再苗. 半固态烧结制备石墨烯/7075铝基复合材料与性能研究[J]. 粉末冶金技术, 2018, 36(4): 303-307. doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.011
YANG Bin, DU Geng-xin, CHENG Fu-lai, JIA Tian-qi, AN Jia-tuo, ZHAO Zi-wei, XIAO Ya-jiao, ZHANG Zai-miao. Preparation and mechanical properties of graphene reinforced-Al7075 composite by semi-solid sintering[J]. Powder Metallurgy Technology, 2018, 36(4): 303-307. doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.011
Citation: YANG Bin, DU Geng-xin, CHENG Fu-lai, JIA Tian-qi, AN Jia-tuo, ZHAO Zi-wei, XIAO Ya-jiao, ZHANG Zai-miao. Preparation and mechanical properties of graphene reinforced-Al7075 composite by semi-solid sintering[J]. Powder Metallurgy Technology, 2018, 36(4): 303-307. doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.011

半固态烧结制备石墨烯/7075铝基复合材料与性能研究

doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.011
基金项目: 

国家自然科学基金资助项目 U1504516

河南科技大学大学生研究训练计划资助项目 2017043

详细信息
    通讯作者:

    杨斌, E-mail: yang_bin19@163.com

  • 中图分类号: TB331

Preparation and mechanical properties of graphene reinforced-Al7075 composite by semi-solid sintering

More Information
  • 摘要: 通过球磨混粉+半固态烧结法成功制备出质量分数为0.5%的石墨烯/7075铝基复合材料,通过扫描电子显微镜、能谱分析仪和室温拉伸力学性能测试等手段,对石墨烯/7075铝基复合材料的显微组织及力学性能进行了研究。结果表明:复合材料中的石墨烯纳米片均匀的分散在7075铝合金基体中,相比于未添加石墨烯的7075铝合金基体,复合材料的密度有所下降,维式硬度和抗拉强度则分别提高了14%和32%,延伸率无明显变化。
  • 图  1  7075铝合金粉体(a)和石墨烯纳米片(b)的扫描电子显微组织形貌

    Figure  1.  SEM images of 7075Al alloy powders (a) and grapheme nanoflakes (b)

    图  2  半固态烧结7075铝基复合材料显微组织形貌与能谱分析:(a)未添加石墨烯Al7075铝合金;(b)添加质量分数0.5%石墨烯/7075铝基复合材料(低倍);(c)添加质量分数0.5%石墨烯/7075铝基复合材料(高倍);(d)A点处能谱分析

    Figure  2.  SEM images and energy dispersive spectrometer (EDS) analysis of graphene reinforced-Al7075 composite by semi-solid sintering: (a) Al7075 composite without graphene; (b) Al7075 composite with 0.5% graphene by mass (low magnification); (c) Al7075 composite with 0.5% graphene by mass (high magnification); (d) EDS analysis at point A

    图  3  未添加石墨烯Al7075铝合金和添加质量分数0.5%石墨烯/7075铝基复合材料的压实密度

    Figure  3.  Density of Al7075 alloy without graphene and Al7075 composite with 0.5% graphene by mass

    图  4  未添加石墨烯Al7075铝合金和添加质量分数0.5%石墨烯/7075铝基复合材料的维氏硬度

    Figure  4.  Vickers hardness of Al7075 alloy without graphene and Al7075 composite with 0.5% graphene by mass

    图  5  未添加石墨烯Al7075铝合金和添加质量分数0.5%石墨烯/7075铝基复合材料的抗拉强度与延伸率

    Figure  5.  Tensile strength and elongation of Al7075 alloy without graphene and Al7075 composite with 0.5% graphene by mass

    图  6  试样拉伸断口扫描电子显微组织形貌:(a)未添加石墨烯Al7075铝合金;(b)添加质量分数0.5%石墨烯/7075铝基复合材料;(c)A区域放大图

    Figure  6.  SEM images of tensile fracture surfaces: (a) Al7075 alloy without graphene; (b) Al7075 composite with 0.5% graphene by mass; (c) magnification image of region A

  • [1] Williams J C, Starke E A Jr. Progress in structural materials for aerospace systems. Acta Mater, 2003, 51(19): 5775 doi: 10.1016/j.actamat.2003.08.023
    [2] Yan S J, Chen X, Hong Q H, et al. Graphite reinforced aluminum matrix nanocomposites. J Aeronaut Mater, 2016, 36(3): 57 https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201603007.htm

    燕绍九, 陈翔, 洪起虎, 等. 石墨烯增强铝基纳米复合材料研究进展. 航空材料学报, 2016, 36(3): 57 https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201603007.htm
    [3] Qi T J, Yu Z M, Xu Z P, et al. Research progress in graphene reinforced aluminum matrix composite. Hot Work Technol, 2016, 45(10): 6 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201610003.htm

    齐天娇, 俞泽民, 许志鹏, 等. 石墨烯增强铝基复合材料的研究进展. 热加工工艺, 2016, 45(10): 6 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201610003.htm
    [4] Lu N N, Xu L, Li C Y, et al. Research progress on preparation technology of aluminum matrix composites reinforced by grapheme. Powder Metall Technol, 2017, 35(4): 310 doi: 10.19591/j.cnki.cn11-1974/tf.2017.04.012

    鲁宁宁, 许磊, 历长云, 等. 石墨烯增强铝基复合材料制备技术研究进展. 粉末冶金技术, 2017, 35(4): 310 doi: 10.19591/j.cnki.cn11-1974/tf.2017.04.012
    [5] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385 doi: 10.1126/science.1157996
    [6] Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 2008, 146(9-10): 351 doi: 10.1016/j.ssc.2008.02.024
    [7] Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Lett, 2008, 8(3): 902 doi: 10.1021/nl0731872
    [8] Yolshina L A, Muradymov R V, Korsun I V, et al. Novel aluminum–graphene and aluminum–graphite metallic composite materials: Synthesis and properties. J Alloys Compd, 2016, 663: 449 doi: 10.1016/j.jallcom.2015.12.084
    [9] Li D S, Wu W Z, Qin Q H, et al. Microstructure and mechanical properties of graphene/Al composites. Chin J Nonferrous Met, 2015, 25(6): 1498 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201506012.htm

    李多生, 吴文政, Qin Qing-hua, 等. 石墨烯/Al复合材料的微观结构及力学性能. 中国有色金属学报, 2015, 25(6): 1498 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201506012.htm
    [10] Bastwros M, Kim Y G, Zhu C, et al. Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Composites Part B, 2014, 60(1): 111 https://www.sciencedirect.com/science/article/abs/pii/S1359836813007737
    [11] Jeon C H, Jeong Y H, Seo J J, et al. Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing. Int J Precis Eng Manuf, 2014, 15(6): 1235 doi: 10.1007/s12541-014-0462-2
    [12] Guan R G, Lian C, Zhao Z Y, et al. Study on preparation of graphene and Al–graphene composite. Rare Met Mater Eng, 2012, 41(Suppl 2): 607 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE2012S2147.htm

    管仁国, 连超, 赵占勇, 等. 石墨烯铝基复合材料的制备及其性能. 稀有金属材料与工程, 2012, 41(增刊2): 607 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE2012S2147.htm
    [13] Li J L, Xiong Y C, Wang X D, et al. Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling. Mater Sci Eng A, 2015, 626: 400 doi: 10.1016/j.msea.2014.12.102
    [14] Yan S J, Dai S L, Zhang X Y. Investigating aluminum alloy reinforced by graphene nanoflakes. Mater Sci Eng A, 2014, 612: 440 doi: 10.1016/j.msea.2014.06.077
    [15] Liu J, Khan U, Coleman J, et al. Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: Powder synthesis and prepared composite characteristics. Mater Des, 2016, 94: 87 doi: 10.1016/j.matdes.2016.01.031
    [16] Zhang D D, Zhan Z J. Progress in research on mechanical properties of graphite/metal composites. J Mater Eng, 2016, 44(5): 112 https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201605017.htm

    张丹丹, 战再吉. 石墨烯/金属复合材料力学性能的研究进展. 材料工程, 2016, 44(5): 112 https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201605017.htm
    [17] Rashad M, Pan F S, Yu Z W, et al. Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with graphene nanoplatelets. Prog Nat Sci, 2015, 25(5): 460 doi: 10.1016/j.pnsc.2015.09.005
    [18] Wang J Y, Li Z Q, Fan G L, et al. Reinforcement with graphene nanosheets in aluminum matrix composites. Scr Mater, 2012, 66(8): 594 doi: 10.1016/j.scriptamat.2012.01.012
  • 加载中
图(6)
计量
  • 文章访问数:  697
  • HTML全文浏览量:  112
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-12
  • 刊出日期:  2018-08-27

目录

    /

    返回文章
    返回