高温复合相变蓄热材料压制工艺及性能研究

华建社 袁超 杜金星

华建社, 袁超, 杜金星. 高温复合相变蓄热材料压制工艺及性能研究[J]. 粉末冶金技术, 2018, 36(4): 308-314. doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.012
引用本文: 华建社, 袁超, 杜金星. 高温复合相变蓄热材料压制工艺及性能研究[J]. 粉末冶金技术, 2018, 36(4): 308-314. doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.012
HUA Jian-she, YUAN Chao, DU Jin-xing. Study on compacting process and properties of high temperature composite phase change thermal storage material[J]. Powder Metallurgy Technology, 2018, 36(4): 308-314. doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.012
Citation: HUA Jian-she, YUAN Chao, DU Jin-xing. Study on compacting process and properties of high temperature composite phase change thermal storage material[J]. Powder Metallurgy Technology, 2018, 36(4): 308-314. doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.012

高温复合相变蓄热材料压制工艺及性能研究

doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.012
详细信息
  • 中图分类号: TB333

Study on compacting process and properties of high temperature composite phase change thermal storage material

  • 摘要: 以铝粉作为相变材料,采用单向模压成型的方法制备出了一种新型高温复合相变蓄热材料。利用金相显微镜和扫描电子显微镜对材料进行分析,从材料混合程度、显微组织、成分结构及表面形貌等方面研究了相变蓄热材料的制备机理和性能影响因素,同时探讨了粉末流动性、堆积密度和粒径配比等参数对相变蓄热材料压坯性能的影响。结果表明:高温复合相变蓄热材料在压制过程中,固相和液相组分不变,主要是气孔以及颗粒形状的宏观和微观变化;随着压制压力增加和保压时间的延长,试样密度逐渐增加,气孔率下降,强度随之增加;相变材料的宏观分布也较为均匀。
  • 图  1  压制过程中试样变形量与压制压力的关系图

    Figure  1.  Relationship between specimen deformation compacting pressure in compacting process

    图  2  试样质量与密度的关系图

    Figure  2.  Relationship between the mass and density of compaction samples

    图  3  压制压力、试样质量和密度关系图

    Figure  3.  Relationship between the compacting pressure, mass, and density of compaction samples

    图  4  压制压力4 MPa条件下试样质量与保压时间对试样密度的影响

    Figure  4.  Effects of the mass and holding time on the density of compaction samples at the compacting pressure of 4 MPa

    图  5  粉末粒度与压制压力对试样密度的影响

    Figure  5.  Effects of the particle size and pressing pressure on the density of compaction samples

    图  6  包含不同质量分数铝粉的试样金相组织形貌:(a)45%;(b)55%;(c)65%;(d)75%

    Figure  6.  Metallographic structures of compaction samples in different aluminum powder contents by mass: (a) 45%; (b) 45%; (c) 45%; (d) 45%

    图  7  铝粉质量分数为70%试样的扫描电子显微形貌:(a)200倍颗粒形貌组织;(b)200倍背散射组织;(c)500倍颗粒形貌组织;(d)500倍背散射组织

    Figure  7.  Microstructures of compaction samples in the aluminium powder mass fraction of 70%: (a) SEM image in 200 times; (b) backscattered electron image in 200 times; (c) SEM image in 500 times; (d) backscattered electron image in 500 times

    图  8  含质量分数70%铝粉试样的组织形貌和能谱分析:(a)组织形貌;(b)区域1处能谱图;(c)区域2处能谱图;(d)区域3处能谱图

    Figure  8.  Microstructures and energy disperse spectroscopy (EDS) analysis of compaction samples in the aluminium powder mass fraction of 70%: (a) SEM image; (b) EDS analysis in region 1; (c) EDS analysis in region 2; (d) EDS analysis in region 3

  • [1] Li B, Liu D P, Yang L. Research progress on thermal storage materials with composite phase change. J Refrig, 2017, 38(4): 36 doi: 10.3969/j.issn.0253-4339.2017.04.036

    李贝, 刘道平, 杨亮. 复合相变蓄热材料研究进展. 制冷学报, 2017, 38(4): 36 doi: 10.3969/j.issn.0253-4339.2017.04.036
    [2] Li Z M. Thermal Storage and Rejection of Solid Phase-Change Materials [Dissertation]. Chongqing: Chongqing University, 2002

    李曾敏. 固体相变蓄热材料的蓄热和放热性能研究[学位论文]. 重庆: 重庆大学, 2002
    [3] Fatih Demirbas M. Thermal energy storage and phase change materials: an overview. Energy Sources, Part B: Economics, Planning, and Policy, 2006, 1: 85 doi: 10.1080/009083190881481
    [4] Zhang J. Study on Preparation and Properties of Expanded Graphite/Paraffin Composite Phase Change Heat Storage Materials [Dissertation]. Xi'an: Xi'an University of Architecture and Technology, 2016

    张娇. 膨胀石墨/石蜡复合相变蓄热材料的制备及性能研究[学位论文]. 西安: 西安建筑科技大学, 2016
    [5] Xu J, Yu S R. Research and application progress of Al-based alloy phase change materials using for thermal storage. Mater Rev, 2013, 27(10): 93 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201319021.htm

    许骏, 于思荣. 铝基合金相变储热材料的研究现状与发展趋势. 材料导报, 2013, 27(10): 93 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201319021.htm
    [6] Wang X, Zhang Y P, Xiao W, et al. Review on thermal performance of phase change energy storage building envelope. Chin Sci Bull, 2009, 54(6): 920 doi: 10.1007/s11434-009-0120-8
    [7] Dai Y, Tang L M. Research and development of phase change material (PCM) used as heat storing material. Chem World, 2001, 42(12): 662 doi: 10.3969/j.issn.0367-6358.2001.12.017

    戴彧, 唐黎明. 相变储热材料研究进展. 化学世界, 2001, 42(12): 662 doi: 10.3969/j.issn.0367-6358.2001.12.017
    [8] Tong Z, Huang W S, Zhang S, et al. Study on the effect of TiO2 on the properties of alumina ceramic support. Powder Metall Technol, 2016, 34(6): 423 doi: 10.3969/j.issn.1001-3784.2016.06.005

    同帜, 黄文帅, 张帅, 等. 复合烧结助剂中TiO2对α–Al2O3陶瓷支撑体的性能影响. 粉末冶金技术, 2016, 34(6): 423 doi: 10.3969/j.issn.1001-3784.2016.06.005
    [9] Chen J. Investigation on Equipment Development and Densification Mechanism of Warm. Powder High Velocity Compaction [Dissertation]. Guangzhou: South China University of Technology, 2011

    陈进. 粉末温高速压制成形装置、成形规律及其致密化机理研究[学位论文]. 广州: 华南理工大学, 2011
    [10] Deng T Q. Research on Ti/Al Composite Powder Forging and Reaction Sintering [Dissertation]. Harbin: Harbin Institute of Technology, 2014

    邓太庆. Ti/Al复合粉末锻造成形与反应烧结工艺研究[学位论文]. 哈尔滨: 哈尔滨工业大学, 2014
    [11] Yao S W. The Study of Sintering Process of Ceramic Base High Temperature Composite Phase Change Heat Storage Material [Dissertation]. Kunming: Kunming University of Science and Technology, 2007

    尧世文. 陶瓷基高温复合相变蓄热材料压制-烧结工艺的研究[学位论文]. 昆明: 昆明理工大学, 2007
    [12] Zhao J S. Preparation and Properties of Al2O3/TiC/CNTs Composites [Dissertation]. Jinan: Shandong Jianzhu University, 2012

    赵金山. Al2O3/TiC/CNTs复合材料的制备与性能研究[学位论文]. 济南: 山东建筑大学, 2012
    [13] Zhan M Y, Kuang Y, Zhou M, et al. Research on density and deformation mechanism of porous metal and alloy during processing. Rare Met Cem Carb, 2002, 30(4): 42 https://www.cnki.com.cn/Article/CJFDTOTAL-XYJY200204012.htm

    詹美燕, 匡勇, 周明, 等. 多孔金属及合金成形过程中的致密化与变形理论研究. 稀有金属与硬质合金, 2002, 30(4): 42 https://www.cnki.com.cn/Article/CJFDTOTAL-XYJY200204012.htm
    [14] Wang P X. Theory of Power Metallurgy. Beijing: Metallurgical Industry Press, 1997

    王盘鑫. 粉末冶金学. 北京: 冶金工业出版社, 1997
    [15] 李超杰. 316L不锈钢温粉末高速压制成形规律及其致密化机理的研究[学位论文]. 广州: 华南理工大学, 2012 https://cdmd.cnki.com.cn/Article/CDMD-10561-1012451910.htm
    [16] Li S X. Preparation of 3Y–TZP ceramics by dry method. Tibet Sci Technol, 2010(7): 49 https://www.cnki.com.cn/Article/CJFDTOTAL-XZKJ201007024.htm

    李树先. 干法成型制备3Y–TZP陶瓷. 西藏科技, 2010(7): 49 https://www.cnki.com.cn/Article/CJFDTOTAL-XZKJ201007024.htm
    [17] Chen W G, Wang F Z. Powder Metallurgy Process and Materials. Beijing: Metallurgical Industry Press, 2011

    陈文革, 王发展. 粉末冶金工艺及材料. 北京: 冶金工业出版社, 2011
    [18] Wang M Y, Ji Z, Zhang Y F, et al. Research progress on the prior particle boundary of a powder metallurgy superalloy. Powder Metall Technol, 2017, 35(2): 142 doi: 10.3969/j.issn.1001-3784.2017.02.011

    王梦雅, 纪箴, 张一帆, 等. 粉末高温合金中原始粉末颗粒边界研究进展. 粉末冶金技术, 2017, 35(2): 142 doi: 10.3969/j.issn.1001-3784.2017.02.011
  • 加载中
图(8)
计量
  • 文章访问数:  295
  • HTML全文浏览量:  62
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-15
  • 刊出日期:  2018-08-27

目录

    /

    返回文章
    返回