石墨烯化学镀铜及其对石墨烯/铜基复合材料组织性能的影响

魏邦争 陈闻超 朱曦 陈鹏起 程继贵

魏邦争, 陈闻超, 朱曦, 陈鹏起, 程继贵. 石墨烯化学镀铜及其对石墨烯/铜基复合材料组织性能的影响[J]. 粉末冶金技术, 2018, 36(5): 363-369, 376. doi: 10.19591/j.cnki.cn11-1974/tf.2018.05.008
引用本文: 魏邦争, 陈闻超, 朱曦, 陈鹏起, 程继贵. 石墨烯化学镀铜及其对石墨烯/铜基复合材料组织性能的影响[J]. 粉末冶金技术, 2018, 36(5): 363-369, 376. doi: 10.19591/j.cnki.cn11-1974/tf.2018.05.008
WEI Bang-zheng, CHEN Wen-chao, ZHU Xi, CHEN Peng-qi, CHENG Ji-gui. Study of electroless plating Cu by reduced graphene oxide and the effects on the microstructures and properties of RGO/Cu composites[J]. Powder Metallurgy Technology, 2018, 36(5): 363-369, 376. doi: 10.19591/j.cnki.cn11-1974/tf.2018.05.008
Citation: WEI Bang-zheng, CHEN Wen-chao, ZHU Xi, CHEN Peng-qi, CHENG Ji-gui. Study of electroless plating Cu by reduced graphene oxide and the effects on the microstructures and properties of RGO/Cu composites[J]. Powder Metallurgy Technology, 2018, 36(5): 363-369, 376. doi: 10.19591/j.cnki.cn11-1974/tf.2018.05.008

石墨烯化学镀铜及其对石墨烯/铜基复合材料组织性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2018.05.008
基金项目: 

国家自然科学基金资助项目 51674095

详细信息
    通讯作者:

    程继贵, E-mail: jgcheng63@sina.com

  • 中图分类号: TB331

Study of electroless plating Cu by reduced graphene oxide and the effects on the microstructures and properties of RGO/Cu composites

More Information
  • 摘要: 以还原氧化石墨烯(reduced graphene oxide,RGO)和CuSO4·5H2O为主要原料,通过化学镀法得到铜包覆RGO复合粉体,再与铜粉混合得到含有不同质量分数RGO(0.2%、0.4%、0.6%、0.8%)的RGO/Cu粉末混合料,经压制及烧结得到RGO/Cu复合材料。通过X射线衍射仪(X-ray diffraction,XRD)、拉曼光谱仪(Raman spectroscopy,RS)和场发射扫描电镜(field emission scanning electron microscope,FESEM)等对RGO/Cu复合材料的微观组织和相关性能进行测试分析,并与由未镀铜处理的RGO所制备的RGO/Cu复合材料的组织性能进行对比。结果表明,经化学镀处理的RGO在RGO/Cu复合材料中分布较均匀,而未镀铜处理的RGO在基体中发生明显的团聚。RGO/Cu复合材料的导电导热性随石墨烯加入量的增加有所下降,但石墨烯的加入可有效提高RGO/Cu复合材料的力学性能,且由镀铜RGO所制备的RGO/Cu复合材料的性能要优于由未处理RGO所制备的RGO/Cu复合材料的性能。此外,RGO加入量对复合材料性能也有明显影响,当添加RGO质量分数为0.4%时,由镀铜RGO所制备的RGO/Cu复合材料的综合性能达到最好,其电导率达95.01% IACS,热导率达415.5W·(m·K)-1,而压缩屈服强度和抗拉强度分别为156.73 MPa和268.62 MPa,较相同工艺条件制备的纯铜的屈服强度(75 MPa)和抗拉强度(234.64 MPa)提升了109%和14.48%。
  • 图  1  RGO、镀铜RGO和RGO/Cu混合粉体的X射线衍射图谱

    Figure  1.  XRD patterns of RGO, Cu-coated RGO, and RGO/Cu mixing powders

    图  2  RGO、镀铜RGO和RGO/Cu混合粉体的拉曼光谱图

    Figure  2.  Raman spectra of RGO, Cu-coated RGO, and RGO/Cu mixing powders

    图  3  RGO、镀铜RGO, 和RGO/Cu混合粉体的扫描电子显微形貌: (a), (d) RGO; (b), (e) RGO/Cu混合粉体; (c), (f) 镀铜RGO

    Figure  3.  SEM morphology of RGO, Cu-coated RGO powders, and RGO/Cu mixing powders: (a), (d) RGO; (b), (e) RGO/Cu mixing powders; (d), (f) Cu-coated RGO powders

    图  4  不同RGO/Cu粉末混合料制备RGO/Cu复合材料的相对密度

    Figure  4.  Relative density of RGO/Cu composites prepared by different RGO/Cu mixing powders

    图  5  RGO/Cu复合材料的表面背散射扫描电子显微形貌: (a), (b) 由未处理RGO所制备的RGO/Cu复合材料; (c), (d) 由镀铜RGO所制备的RGO/Cu复合材料

    Figure  5.  Backscatter SEM morphology of RGO/Cu composites: (a), (b) RGO/Cu composites prepared by Cu-unplated RGO powders; (c), (d) RGO/Cu composites prepared by Cu-coated RGO

    图  6  纯铜和RGO/Cu复合材料的拉伸断口图: (a), (d) 纯铜; (b), (e) 由未处理RGO (质量分数为0.4%) 所制备的RGO/Cu复合材料; (c), (f) 由镀铜RGO (质量分数为0.4%) 所制备的RGO/Cu复合材料

    Figure  6.  Fracture morphologies of pure copper and RGO/Cu composites: (a), (d) pure copper; (b), (e) RGO/Cu composites prepared by Cu-unplated RGO (mass fraction of 0.4%); (c), (f) RGO/Cu composites prepared by Cu-coated RGO (mass fraction of 0.4%)

    图  7  不同RGO/Cu粉末混合料制备的RGO/Cu复合材料电导率(a) 和热导率(b)

    Figure  7.  Electrical conductivity (a) and thermal conductivity (b) of RGO/Cu composites prepared by different RGO/Cu mixing powders

    图  8  不同RGO/Cu粉末混合料所制备RGO/Cu复合材料的压缩应力–应变曲线(A) 及压缩屈服强度(B)

    Figure  8.  Compressive stress–strain curves (A) and compressive yield strength (B) of RGO/Cu composites prepared by different RGO/Cu mixing powders

    图  9  不同RGO/Cu粉末混合料制备RGO/Cu复合材料的拉伸应力–应变曲线(A) 及抗拉强度(B)

    Figure  9.  Tensile stress–strain curves (A) and tensile strength (B) of RGO/Cu composites prepared by different RGO/Cu mixing powders

  • [1] Zhang J G, Wang L M, Zhang S M, et al. The copper and copper alloy powders application and research status. Powder Metall Ind, 2013, 23(1): 52 doi: 10.3969/j.issn.1006-6543.2013.01.011

    张敬国, 汪礼敏, 张少明, 等. 铜及铜合金粉末应用及研究现状. 粉末冶金工业, 2013, 23(1): 52 doi: 10.3969/j.issn.1006-6543.2013.01.011
    [2] Zhu C C, Ma A B, Jiang J H, et al. Research status and development tendency of high-strength and high-conductivity copper alloy. Hot Working Technol, 2013, 42(2): 15 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201302005.htm

    朱承程, 马爱斌, 江静华, 等. 高强高导铜合金的研究现状与发展趋势. 热加工工艺, 2013, 42(2): 15 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201302005.htm
    [3] Ullbrand J M, Córdoba J M, Tamayo-Ariztondo J, et al. Thermomechanical properties of copper-carbon nanofibre composites prepared by spark plasma sintering and hot pressing. Compos Sci Technol, 2010, 70(16): 2263 doi: 10.1016/j.compscitech.2010.08.016
    [4] Tamayo-Ariztondo J, Córdoba J M, Odén M, et al. Effect of heat treatment of carbon nanofibres on electroless copper deposition. Compos Sci Technol, 2010, 70(16): 2269 doi: 10.1016/j.compscitech.2010.07.015
    [5] Wang Y, Yan Q Z, Zhang X L, et al. Effect of graphite on properties of copper-based brake pads material made by powder metallurgy. Powder Metall Technol, 2012, 30(6): 432 doi: 10.3969/j.issn.1001-3784.2012.06.006

    王晔, 燕青芝, 张肖路, 等. 石墨对铜基粉末冶金闸片材料性能的影响. 粉末冶金技术, 2012, 30(6): 432 doi: 10.3969/j.issn.1001-3784.2012.06.006
    [6] Geim A K. Graphene: status and prospects. Science, 2009, 324(5934): 1530 doi: 10.1126/science.1158877
    [7] Lee C G, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385 doi: 10.1126/science.1157996
    [8] Rafiee M A. Graphene-based Composite Materials[Dissertation]. Troy: Rensselaer Polytechnic Institute, 2011
    [9] Renteria J, Legedza S, Salgado R, et al. Magnetically-functionalized self-aligning graphene fillers for high-efficiency thermal management applications. Mater Des, 2015, 88: 214 doi: 10.1016/j.matdes.2015.08.135
    [10] Qi X Y, Pu K Y, Li H, et al. Amphiphilic graphene composites. Angew Chem, 2010, 122: 9616 doi: 10.1002/ange.201004497
    [11] Huang X, Qi X, Boey F, et al. Graphene-based composites. Chem Soc Rev, 2012, 41(2): 666 doi: 10.1039/C1CS15078B
    [12] Gao X, Yue H Y, Guo E J, et al. Mechanical properties and thermal conductivity of graphene reinforced copper matrix composites. Powder Technol, 2016, 301: 601 doi: 10.1016/j.powtec.2016.06.045
    [13] Sadowski P, Kowalczyk-Gajewska K, Stupkiewicz S. Classical estimates of the effective thermoelastic properties of copper-graphene composites. Compos Part B, 2015, 80: 278 doi: 10.1016/j.compositesb.2015.06.007
    [14] Chu K, Wang F, Wang X H, et al. Anisotropic mechanical properties of graphene/copper composites with aligned graphene. Mater Sci Eng A, 2018, 713: 269 doi: 10.1016/j.msea.2017.12.080
    [15] Wang L D, Yang Z Y, Cui Y, et al. Graphene-copper composite with micro-layered grains and ultrahigh strength. Sci Rep, 2017, 7: 41896 doi: 10.1038/srep41896
    [16] Hwang J, Yoon T, Jin S H, et al. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv Mater, 2013, 25(46): 6724 doi: 10.1002/adma.201302495
    [17] Kim W J, Lee T J, Han S H. Multi-layer graphene/copper composites: preparation using high-ratio differential speed rolling. microstructure and mechanical properties, Carbon, 2014, 69(4): 55 http://www.sciencedirect.com/science/article/pii/s0008622313011238
    [18] Ling Z C, Yan C X, Shi Q N, et al. Recent progress in preparation methods for metal matrix composite materials reinforced with graphene nanosheets. Mater Rev, 2015, 29(4): 143 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201507027.htm

    凌自成, 闫翠霞, 史庆南, 等. 石墨烯增强金属基复合材料的制备方法研究进展. 材料导报, 2015, 29(4): 143 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201507027.htm
    [19] Tang Y X, Yang X M, Wang R R, et al. Enhancement of the mechanical properties of graphene-copper composites with graphene-nickel hybrids. Mater Sci Eng A, 2014, 599(2): 247 http://www.sciencedirect.com/science/article/pii/S0921509314000926
    [20] Hsieh C C, Liu W R. Synthesis and characterization of nitrogen-doped graphene nanosheets/copper composite film for thermal dissipation. Carbon, 2017, 118: 1 doi: 10.1016/j.carbon.2017.03.025
    [21] Cho S C, Kikuchi K, Kawasaki A, et al. Effective load transfer by a chromium carbide nanostructure in a multi-walled carbon nanotube/copper matrix composite. Nanotechnology, 2012, 23(31): 315705 doi: 10.1088/0957-4484/23/31/315705
    [22] Koppad P G, Ram H R A, Kashyap K T. On shear-lag and thermal mismatch model in multiwalled carbon nanotube/copper matrix nanocomposites. J Alloys Compd, 2013, 549(2): 82 http://www.sciencedirect.com/science/article/pii/S0925838812016477
  • 加载中
图(9)
计量
  • 文章访问数:  345
  • HTML全文浏览量:  218
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-18
  • 刊出日期:  2018-10-27

目录

    /

    返回文章
    返回