液相烧结过程中粉末粒径分布演化模拟研究

潘诗琰 代文杰 周子豪 蒋捷 霍天元 申小平 范沧

潘诗琰, 代文杰, 周子豪, 蒋捷, 霍天元, 申小平, 范沧. 液相烧结过程中粉末粒径分布演化模拟研究[J]. 粉末冶金技术, 2018, 36(6): 409-417,422. doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.002
引用本文: 潘诗琰, 代文杰, 周子豪, 蒋捷, 霍天元, 申小平, 范沧. 液相烧结过程中粉末粒径分布演化模拟研究[J]. 粉末冶金技术, 2018, 36(6): 409-417,422. doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.002
PAN Shi-yan, DAI Wen-jie, ZHOU Zi-hao, JIANG Jie, HUO Tian-yuan, SHEN Xiao-ping, FAN Cang. Simulation study on size distribution evolution of powder particles in liquid phase sintering[J]. Powder Metallurgy Technology, 2018, 36(6): 409-417,422. doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.002
Citation: PAN Shi-yan, DAI Wen-jie, ZHOU Zi-hao, JIANG Jie, HUO Tian-yuan, SHEN Xiao-ping, FAN Cang. Simulation study on size distribution evolution of powder particles in liquid phase sintering[J]. Powder Metallurgy Technology, 2018, 36(6): 409-417,422. doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.002

液相烧结过程中粉末粒径分布演化模拟研究

doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.002
基金项目: 

国家自然科学基金资助项目 51501091

详细信息
    通讯作者:

    潘诗琰, E-mail: calculate@163.com

  • 中图分类号: TF124.1

Simulation study on size distribution evolution of powder particles in liquid phase sintering

More Information
  • 摘要: 液相烧结过程中, 粉末颗粒的熟化长大和聚并同时发生。利用群体平衡模型定量预测了相邻颗粒聚并效应作用下的粒径分布演化规律, 提出了一种基于欧式范数的方法以确定液相烧结过程是否达到稳态, 研究了从瞬态到稳态的转变过程中的粒径上限及其变化率, 发现颗粒瞬态粗化之后将得到稳态粒径分布。模型计算得到的粒径分布和实验数据之间吻合良好, 表明本数值模型具备定量预测能力。通过引入布朗粗化频率描述液相烧结过程中的聚并现象, 模拟结果表明颗粒的聚并行为显著延缓了瞬态向稳态的转变过程, 甚至可能导致最终得到非稳态粒径分布。
  • 图  1  聚合过程示意图: (a) 颗粒聚并示意图; (b) 颗粒对[4]; (c) 颗粒团簇[17]; (d) 固体骨架结构[18]

    Figure  1.  Aggregation process: (a) schematic illustration of particle aggregation; (b) particle pair[4]; (c) particle cluster[17]; (d) solid skeletal structure[18]

    图  2  液相烧结过程中颗粒成分分布和二元合金相图

    Figure  2.  Composition distribution in solid particle during LPS and the phase diagram for a binary alloy

    图  3  瞬态到稳态的液相烧结过程: (a) 不同时间粒径分布; (b) ║f (ρi, τ+ (35) τ) -f (ρi, τ) ║ (i=1, …, Nξ) 欧式范数随时间变化关系曲线

    Figure  3.  LPS from the transient to the steady state: (a) PSD at different time; (b) Euclidean norm of║f (ρi, τ+ (35) τ) -f (ρi, τ) ║ (i=1, …, Nξ) as a function of time

    图  4  颗粒体积分数ϕ分别为0.13和0.40条件下的欧式范数║f (ρi, τ+ (35) τ) -f (ρi, τ) ║ (a), 最大粒径ρm1 (b) 和最大粒径变化速率(dρm1/dτ) 随时间变化的函数关系(c)

    Figure  4.  Euclidean norm of║f (ρi, τ+ (35) τ) -f (ρi, τ) ║ (a), the maximum particle size (ρm1) (b), and the changing rate of the maximum particle size (dρm1/dτ) as a function of time (c) at ϕ=0.13 and 0.40

    图  5  非零颗粒体积分数下计算得到的稳态粒径分布与实验结果: (a) ϕ=0.13; (b) ϕ=0.40

    Figure  5.  Experiment and calculation results of particle size distribution in steady state at nonzero particle volume fraction: (a) ϕ=0.13; (b) ϕ=0.40

    图  6  瞬态到稳态的液相烧结过程中粒径分布(f (ρ, τ)) 和负聚并速率(-Qagg (ρ, τ)) 的演化: (a) τ=0.90; (b) τ=1.34; (c) τ=1.57; (d) τ=1.79; (e) τ=4.48; (f) τ=22.40, 89.59, 170.22和188.14

    Figure  6.  Evolutions of particle size distribution (f (ρ, τ)) and the negative of aggregation term (-Qagg (ρ, τ)) during LPS from the transient to the steady state: (a) τ=0.90; (b) τ=1.34; (c) τ=1.57; (d) τ=1.79; (e) τ=4.48; (f) τ=22.40, 89.59, 170.22, and 188.14

    表  1  不同颗粒体积分数下τcr1, τcr2, ρm1 (τcr2) 及f (ρm1, τcr2)

    Table  1.   Values ofτcr1, τcr2, ρm1 (τcr2), and f (ρm1, τcr2) for the different particle volume fractions

    ϕ τcr1 τcr2 ρm1(τcr2) f(ρm1, τcr2)
    0.13 4.9 6.0 1.624 1.56×10-3
    0.40 5.4 6.7 1.695 5.22×10-4
    下载: 导出CSV
  • [1] German R M, Han F L. Establishment of the scientific underpinnings in powder injection molding and liquid phase sintering. Powder Metall Technol, 2008, 26(2): 145 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ200802016.htm

    German R M, 韩凤麟. 粉末注射成形与液相烧结科学基础的建立. 粉末冶金技术, 2008, 26(2): 145 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ200802016.htm
    [2] Li S S, Liu J L, Dai Y L, et al. Study on forming process of Fe-based porous materials by transient liquid phase sintering with Ni-P eutectic powders. Powder Metall Technol, 2011, 29(3): 163 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201103002.htm

    李莎莎, 刘京雷, 戴玉林, 等. Fe基多孔材料瞬时液相烧结过程研究. 粉末冶金技术, 2011, 29(3): 163 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201103002.htm
    [3] Tang C F, Qu X H, Wang T J, et al. Supersolidus liquid phase sintering of GH4049 powder alloy. Powder Metall Technol, 2007, 25(2): 104 doi: 10.3321/j.issn:1001-3784.2007.02.006

    汤春峰, 曲选辉, 王天剑, 等. 超固相线液相烧结GH4049粉末合金. 粉末冶金技术, 2007, 25(2): 104 doi: 10.3321/j.issn:1001-3784.2007.02.006
    [4] German R M, Suri P, Park S J. Review: liquid phase sintering. J Mater Sci, 2009, 44(1): 1. doi: 10.1007/s10853-008-3008-0
    [5] Lifshitz I M, Slyozov V V. The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids, 1961, 19(1): 35. http://www.sciencedirect.com/science/article/pii/0022369761900543
    [6] Wagner C. Theory of precipitate change by redissolution. ZElectrochem, 1961, 65(7-8): 581.
    [7] Ardell A J. On the coarsening of grain boundary precipitates. Acta Metall, 1972, 20(4): 601. doi: 10.1016/0001-6160(72)90015-6
    [8] Brailsford A D, Wynblatt P. The dependence of ostwald ripening kinetics on particle volume fraction. Acta Metall, 1979, 27(3): 489. doi: 10.1016/0001-6160(79)90041-5
    [9] Voorhees P W, Glicksman M E. Solution to the multi-particle diffusion problem with applications to Ostwald ripening-I. Theory. Acta Metall, 1984, 32(11): 2001. doi: 10.1016/0001-6160(84)90180-9
    [10] Alkemper J, Snyder V A, Akaiwa N, et al. Dynamics of late-stage phase separation: A test of theory. Phys Rev Lett, 1999, 82(13): 2725. doi: 10.1103/PhysRevLett.82.2725
    [11] Snyder V A, Alkemper J, Voorhees P W. Transient Ostwald ripening and the disagreement between steady-state coarsening theory and experiment. Acta Mater, 2001, 49(4): 699. doi: 10.1016/S1359-6454(00)00342-6
    [12] Fang Z, Patterson B R, Turner M E. Influence of particle size distribution on coarsening. Acta Metall Mater, 1992, 40(4): 713. doi: 10.1016/0956-7151(92)90013-5
    [13] Chen M K, Voorhees P W. The dynamics of transient Ostwald ripening. Modell Simul Mater Sci Eng, 1993, 1(5): 591. doi: 10.1088/0965-0393/1/5/002
    [14] Courtney T H. Microstructural evolution during liquid phase sintering: Part Ⅰ. Development of microstructure. Metall Trans A, 1977, 8(5): 679. doi: 10.1007/BF02664776
    [15] Kohara S. Study on liquid phase sintering(growth of Wparticles in W-Ni alloys liquid phase sintered under microgravity). J Jpn Soc Microgravity Appl, 1995, 12(4): 242. http://ci.nii.ac.jp/naid/10002844614
    [16] German R M. Grain agglomeration in solid-liquid mixtures under microgravity conditions. Metall Mater Trans B, 1995, 26: 649. doi: 10.1007/BF02653886
    [17] Singh M, Kumar J, Bück A. A volume conserving discrete formulation of aggregation population balance equations on non-uniform meshes. IFAC PapersOnLine, 2015, 48(1): 192. doi: 10.1016/j.ifacol.2015.05.008
    [18] Tewari A, Gokhale A M, German R M. Effect of gravity on three-dimensional coordination number distribution in liquid phase sintered microstructures. Acta Mater, 1999, 47(13): 3721. doi: 10.1016/S1359-6454(99)00164-0
    [19] Randolph A D, Larson M A. Transient and steady state size distributions in continuous mixed suspension crystallizers. AIChE J, 1962, 8(5): 639. doi: 10.1002/aic.690080515
    [20] Ramkrishna D. Population Balances: Theory and Applications to Particulate Systems in Engineering. San Diego: Academic Press, 2000.
    [21] Poon J M H, Ramachandran R, Sanders C F W, et al. Experimental validation studies on a multi-dimensional and multi-scale population balance model of batch granulation. Chem Eng Sci, 2009, 64(4): 775. doi: 10.1016/j.ces.2008.08.037
    [22] Subbanna M, Kapur P C, Pradip P, et al. Population balance model for solid state sintering Ⅰ. Pore shrinkage and densification. Ceram Int, 2001, 27(1): 57. doi: 10.1016/S0272-8842(00)00043-2
    [23] Sivakumar S, Subbanna M, Sahay S S, et al. Population balance model for solid state sintering Ⅱ. Grain growth. Ceram Int, 2001, 27: 63. doi: 10.1016/S0272-8842(00)00042-0
    [24] Hulburt H M, Katz S. Some problems in particle technology: A statistical mechanical formulation. Chem Eng Sci, 1964, 19(8): 555. doi: 10.1016/0009-2509(64)85047-8
    [25] Kumar S, Ramkrishna D. On the solution of population balance equations by discretization-Ⅱ. A moving pivot technique. Chem Eng Sci, 1996, 51(8): 1333. doi: 10.1016/0009-2509(95)00355-X
    [26] Li J J, Guo C W, Ma Y, et al. Effect of initial particle size distribution on the dynamics of transient Ostwald ripening: A phase field study. Acta Mater, 2015, 90: 10. doi: 10.1016/j.actamat.2015.02.030
    [27] Krichevsky O, Stavans J. Correlated Ostwald ripening in two dimensions. Phys Rev Lett, 1993, 70(10): 1473. doi: 10.1103/PhysRevLett.70.1473
    [28] Garcia-Perez P, Pagnoux C, Pringuet A, et al. Agglomeration of alumina submicronparticles by silica nanoparticles: Application to processing spheres by colloidal route. J Colloid Interface Sci, 2007, 313(2): 527. doi: 10.1016/j.jcis.2007.04.050
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  336
  • HTML全文浏览量:  132
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-13
  • 刊出日期:  2018-12-20

目录

    /

    返回文章
    返回