镀钨碳纳米管增强镁基复合材料的摩擦磨损性能研究

吴琼 贾成厂 聂俊辉

吴琼, 贾成厂, 聂俊辉. 镀钨碳纳米管增强镁基复合材料的摩擦磨损性能研究[J]. 粉末冶金技术, 2018, 36(6): 423-428. doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.004
引用本文: 吴琼, 贾成厂, 聂俊辉. 镀钨碳纳米管增强镁基复合材料的摩擦磨损性能研究[J]. 粉末冶金技术, 2018, 36(6): 423-428. doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.004
WU Qiong, JIA Cheng-chang, NIE Jun-hui. Friction and wear properties of magnesium matrix composites reinforced by tungsten-coated carbon nanotubes[J]. Powder Metallurgy Technology, 2018, 36(6): 423-428. doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.004
Citation: WU Qiong, JIA Cheng-chang, NIE Jun-hui. Friction and wear properties of magnesium matrix composites reinforced by tungsten-coated carbon nanotubes[J]. Powder Metallurgy Technology, 2018, 36(6): 423-428. doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.004

镀钨碳纳米管增强镁基复合材料的摩擦磨损性能研究

doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.004
详细信息
    通讯作者:

    贾成厂, E-mail: jiachc@126.com

  • 中图分类号: TB333

Friction and wear properties of magnesium matrix composites reinforced by tungsten-coated carbon nanotubes

More Information
  • 摘要: 以羰基钨为前驱体, 采用金属有机化学气相沉积在碳纳米管表面镀覆了金属钨, 利用磁力搅拌混粉和放电等离子体烧结制备了镀钨碳纳米管增强镁基复合材料((W-CNTs) /Mg), 研究了W-CNTs质量分数对复合材料摩擦磨损性能的影响。结果表明: W-CNTs的加入可对镁基体起到降低摩擦系数、减少磨损量的作用; 当W-CNTs质量分数为0.75%时, 复合材料的摩擦系数和磨损量均最小, 分别较纯镁降低了43.7%和71.4%;增加或降低复合材料中的W-CNTs质量分数, 材料的摩擦系数、磨损量均将增大。(W-CNTs) /Mg复合材料的摩擦磨损性能高于CNTs/Mg复合材料。
  • 图  1  碳纳米管表面有机化学气相沉积镀钨示意图

    Figure  1.  Diagram of tungsten coating onto CNTs by MOCVD

    图  2  WTM-2E型摩擦磨损试验仪

    Figure  2.  WTM-2E type friction and wear tester

    图  3  原始碳纳米管形貌和W-CNTs扫描电子显微镜形貌: (a) 原始碳纳米管; (b) W-CNTs; (c) W-CNTs能谱分析

    Figure  3.  SEM morphologies of original CNTs and W-CNTs: (a) original CNTs; (b) W-CNTs; (c) energy spectrum analysis of W-CNTs

    图  4  添加不同质量分数W-CNTs的混合粉体扫描电子显微形貌: (a) W-CNTs质量分数为0.25%; (b) W-CNTs质量分数为0.75%; (c) W-CNTs质量分数为1.25%; (d) W-CNTs质量分数为1.75%

    Figure  4.  Morphologies of as-mixed powders containing different W-CNTs contents by mass: (a) 0.25%; (b) 0.75%; (c) 1.25%; (d) 1.75%

    图  5  W-CNTs质量分数与块体相对密度的关系

    Figure  5.  Relationship between W-CNTs contents by mass and relative density of bulk

    图  6  W-CNTs的质量分数与摩擦系数的关系

    Figure  6.  Relationship between W-CNTs content by mass and friction coefficient

    图  7  W-CNTs质量分数与磨损量的关系

    Figure  7.  Relationship between W-CNTs content by mass and wear loss

    图  8  (W-CNTs) /Mg复合材料磨损表面形貌与W-CNTs质量分数关系: (a) 纯镁; (b) 0.25%W-CNTs; (c) 0. 7 5%W-CNTs; (d) 1. 2 5%W-CNTs; (e) 1.75%W-CNTs

    Figure  8.  Relationship between wear morphologies and W-CNTs contents by mass of (W-CNTs) /Mg composites: (a) pure Mg; (b) 0.25%W-CNTs; (c) 0. 7 5%W-CNTs; (d) 1. 2 5%W-CNTs; (e) 1.75%W-CNTs

    表  1  摩擦磨损实验工艺参数

    Table  1.   Process parameters of friction and wear test

    对磨材料 磨球直径/mm 摩擦回转半径/mm 主轴转速/(r·min-1)
    Si3N4 5 4 480
    下载: 导出CSV
  • [1] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56. doi: 10.1038/354056a0
    [2] Pulickel M A, James M T. Nanotube composites. Nature, 2007, 447: 1066. doi: 10.1038/4471066a
    [3] Wong E W, Sheehan P E, Liebei C M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science, 1997, 277: 1971. doi: 10.1126/science.277.5334.1971
    [4] Chen X, Fu G S, Qian K W. Research status and development trend of magnesium matrix composites. Mech Electr Technol, 2003(Suppl 1): 74 https://www.cnki.com.cn/Article/CJFDTOTAL-JDJS2003S1012.htm

    陈晓, 傅高升, 钱匡武. 镁基复合材料的研究现状和发展趋势. 机电技术, 2003(增刊1): 74 https://www.cnki.com.cn/Article/CJFDTOTAL-JDJS2003S1012.htm
    [5] Wu Q, Jia C C, Nie J H. The mechanical and electrical properties of magnesium matrix composites reinforced by tungsten-coated carbon nanotubes. Powder Metall Technol, 2012, 30(3): 171 doi: 10.3969/j.issn.1001-3784.2012.03.003

    吴琼, 贾成厂, 聂俊辉. 镀W碳纳米管增强Mg基复合材料的力学和电学性能. 粉末冶金技术, 2012, 30(3): 171 doi: 10.3969/j.issn.1001-3784.2012.03.003
    [6] Qin C, Shi X, Bai S Q, et al. High temperature electrical and thermal properties of the bulk carbon nanotube prepared by SPS. Mater Sci Eng A, 2006, 420(1-2): 208. doi: 10.1016/j.msea.2006.01.055
    [7] Shen J L, Li S N, Yu T Q, et al. Study on the mechanical properties and strengthening mechanism of magnesium matrix composite by powder metallurgy. Foundry Technol, 2005, 26(4): 309 doi: 10.3969/j.issn.1000-8365.2005.04.016

    沈金龙, 李四年, 余天庆, 等. 粉末冶金法制备镁基复合材料的力学性能和增强机理研究. 铸造技术, 2005, 26(4): 309 doi: 10.3969/j.issn.1000-8365.2005.04.016
    [8] Wang F, Arai S, Endo M. Metallization of multi-walled carbon nanotubes with copper by an electroless deposition process. Electrochem Commun, 2004, 6(10): 1042. doi: 10.1016/j.elecom.2004.08.007
    [9] Ding Z P, Zhang X B, Xu G L, et al. Fabrication and tribological properties of carbon nanotubes-aluminum composites. J Zhejiang Univ Eng Sci, 2005, 39(11): 1811 doi: 10.3785/j.issn.1008-973X.2005.11.034

    丁志鹏, 张孝彬, 许国良, 等. 碳纳米管/铝基复合材料的制备及摩擦性能研究. 浙江大学学报(工学版), 2005, 39(11): 1811 doi: 10.3785/j.issn.1008-973X.2005.11.034
    [10] Wang C J. Test research on tribological properties and bonding strength of metal matrix composites. China Plast, 2010, 24(6): 62 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSU201006023.htm

    王成军. 金属基复合材料的摩擦学性能及结合强度试验研究. 中国塑料, 2010, 24(6): 62 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSU201006023.htm
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  182
  • HTML全文浏览量:  75
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-11
  • 刊出日期:  2018-12-20

目录

    /

    返回文章
    返回