低温燃烧合成法制备粒径相近的MnO、Mn3O4和Mn2O3纳米颗粒

赵中康 王松伟 张鑫 邵烨平 姚蓉 杨孟孟 白洋

赵中康, 王松伟, 张鑫, 邵烨平, 姚蓉, 杨孟孟, 白洋. 低温燃烧合成法制备粒径相近的MnO、Mn3O4和Mn2O3纳米颗粒[J]. 粉末冶金技术, 2018, 36(6): 433-437. doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.006
引用本文: 赵中康, 王松伟, 张鑫, 邵烨平, 姚蓉, 杨孟孟, 白洋. 低温燃烧合成法制备粒径相近的MnO、Mn3O4和Mn2O3纳米颗粒[J]. 粉末冶金技术, 2018, 36(6): 433-437. doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.006
ZHAO Zhong-kang, WANG Song-wei, ZHANG Xin, SHAO Ye-ping, YAO Rong, YANG Meng-meng, BAI Yang. Preparation of MnO, Mn3O4, and Mn2O3 nano-particles in similar sizes by low-temperature combustion synthesis method[J]. Powder Metallurgy Technology, 2018, 36(6): 433-437. doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.006
Citation: ZHAO Zhong-kang, WANG Song-wei, ZHANG Xin, SHAO Ye-ping, YAO Rong, YANG Meng-meng, BAI Yang. Preparation of MnO, Mn3O4, and Mn2O3 nano-particles in similar sizes by low-temperature combustion synthesis method[J]. Powder Metallurgy Technology, 2018, 36(6): 433-437. doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.006

低温燃烧合成法制备粒径相近的MnO、Mn3O4和Mn2O3纳米颗粒

doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.006
基金项目: 

国家自然科学基金资助项目 11464007

广西壮族自治区自然科学基金资助项目 2017GXNSFAA198373

桂林电子科技大学研究生创新项目资助项目 2017YJCXB01

桂林电子科技大学研究生创新项目资助项目 2017YJCX115

详细信息
    通讯作者:

    张鑫, E-mail: xzhang80@163.com

  • 中图分类号: TB383.1;TQ137.12

Preparation of MnO, Mn3O4, and Mn2O3 nano-particles in similar sizes by low-temperature combustion synthesis method

More Information
  • 摘要: 通过控制硝酸盐(硝酸锰) 与有机燃料(尿素) 的摩尔比, 采用低温燃烧合成法制备了粒径相近、形貌不同的单相MnO、Mn3O4和Mn2O3纳米粒子。扫描电子显微形貌观察结果显示, 三种纳米粒子尺寸约为100 nm, 依据Mn离子价态的不同, 三种纳米粒子的形貌分别为链状、马铃薯状和球状; 热重-差热分析表明, 样品粒径大小主要取决于有机燃料的着火点; 磁性测量结果显示, 低温时MnO和Mn2O3粒子表现出弱铁磁性, 这主要归因于纳米颗粒表面存在未补偿的自旋。本文为制备不同价态高纯锰氧化物纳米颗粒提供了一种环境友好、工业稳定的途径。
  • 图  1  纳米颗粒X射线衍射图: (a) MnO; (b) Mn3O4; (c) Mn2O3

    Figure  1.  X-ray powder diffraction patterns of as-prepared nanoparticles: (a) MnO; (b) Mn3O4; (c) Mn2O3

    图  2  纳米颗粒发射扫描电子显微形貌: (a), (b) MnO; (c), (d) Mn3O4; (e), (f) Mn2O3

    Figure  2.  FESEM images of as-prepared nanoparticles: (a) and (b) MnO; (c) and (d) Mn3O4; (e) and (f) Mn2O3

    图  3  固态前驱体差示扫描量热分析

    Figure  3.  DSC analyse of MnO, Mn3O4, and Mn2O3 precursors

    图  4  100 Oe磁场下不同样品的场冷-零场冷曲线((a), (b)和(c))和10K下的磁滞回线((d), (e)和(f))

    Figure  4.  ZFC-FC magnetization curves under an applied field of 100 Oe((a), (b), and (c)) and hysteresis loops at 10 K((d), (e), and (f)) of as-prepared MnO, Mn3O4, and Mn2O3nanoparticles

  • [1] Zang J, Qian H, Wei Z K, et al. Reduced graphene oxide supported MnO nanoparticles with excellent lithium storage performance. Electrochim Acta, 2014, 118: 112. doi: 10.1016/j.electacta.2013.12.016
    [2] Jiang H, Zhao T, Yan C Y, et al. Hydrothermal synthesis of novel Mn3O4 nano-octahedrons with enhanced supercapacitors performances. Nanoscale, 2010, 2(10): 2195. doi: 10.1039/c0nr00257g
    [3] Yu P, Zhang X, Chen Y, et al. Preparation and pseudo-capacitance of birnessite-type MnO2nanostructures via microwave-assisted emulsion method. Mater Chem Phys, 2009, 118(2-3): 303. doi: 10.1016/j.matchemphys.2009.07.057
    [4] Du J, Gao Y Q, Chai L L, et al. Hausmannite Mn3O4nanorods: Synthesis, characterization and magnetic properties. Nanotechnology, 2006, 17(19): 4923. doi: 10.1088/0957-4484/17/19/024
    [5] Gao J, Lowe M A, Kiya Y, et al. Effects of liquid electrolytes on the charge-discharge performance of rechargeable lithium/sulfur batteries: Electrochemical and in-situ X-ray absorption spectroscopic studies. J Phys Chem C, 2011, 115(50): 25132. doi: 10.1021/jp207714c
    [6] Stobbe E R, De Boer B A, Geus J W. The reduction and oxidation behaviour of manganese oxides. Catal Today, 1999, 47(1-4): 161. doi: 10.1016/S0920-5861(98)00296-X
    [7] Yamashita T, Vannice A. NO decomposition over Mn2O3and Mn3O4. J Catal, 1996, 163(1): 158. doi: 10.1006/jcat.1996.0315
    [8] Song J G, Xu M H, Wang F, et al. Thermodynamics conditions of preparing A1(OH)3-Y(OH)3/ZrB2 composite powder via the co-precipitation method. Powder Metall Technol, 2012, 30(4): 250 doi: 10.3969/j.issn.1001-3784.2012.04.002

    宋杰光, 徐明晗, 王芳, 等. 共沉淀法制备A1(OH)3-Y(OH)3/ZrB2复合粉体的热力学形成条件研究. 粉末冶金技术, 2012, 30(4): 250 doi: 10.3969/j.issn.1001-3784.2012.04.002
    [9] Liu L, Yang H X, Wei J J, et al. Controllable synthesis of monodisperse Mn3O4 and Mn2O3 nanostructures via a solvothermal route. Mater Lett, 2011, 65(4): 694. doi: 10.1016/j.matlet.2010.11.042
    [10] Xiao L Y, Xiao Q, Liu Y L. Preparation and characterization of flower-like SrAl2O4: Eu2+, Dy3+ phosphors by sol-gel process. J Rare Earths, 2011, 29(1): 39. doi: 10.1016/S1002-0721(10)60405-X
    [11] Bousquet-Berthelin C, Stuerga D. Flash microwave synthesis of Mn3O4-hausmannite nanoparticles. J Mater Sci, 2005, 40(1): 253. doi: 10.1007/s10853-005-5721-2
    [12] Wang X, Zhuang J, Peng Q, et al. A general strategy for nanocrystal synthesis. Nature, 2005, 437(7055): 121. doi: 10.1038/nature03968
    [13] Chen B, Rao G H, Wang S W, et al. Facile synthesis and characterization of Mn3O4 nanoparticles by auto-combustion method. Mater Lett, 2015, 154: 160. doi: 10.1016/j.matlet.2015.04.087
    [14] Duan L B, Chu W G, Yu J, et al. Structural and magnetic properties of Zn1-x Cox O(0 < x≤0.30)nanoparticles. JMagn Magn Mater, 2008, 320(8): 1573. doi: 10.1016/j.jmmm.2008.01.009
    [15] Tackett R, Lawes G, Melot B C, et al. Magnetodielectric coupling in Mn3O4. Phys Rev B, 2007, 76(2): 024409. doi: 10.1103/PhysRevB.76.024409
    [16] Si P Z, Li D, Lee J W, et al. Unconventional exchange bias in oxide-coated manganese nanoparticles. Appl Phys Lett, 2005, 87(13): 133122. doi: 10.1063/1.2072807
    [17] Wang X, Li Y D. Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem Eur J, 2003, 9(1): 300. doi: 10.1002/chem.200390024
    [18] Bah M A, Jaffari G H, Khan F A, et al. Surfaces and their effect on the magnetic properties of polycrystalline hollowγ-Mn2O3 and MnO nanoparticles. Appl Surf Sci, 2016, 375: 136. doi: 10.1016/j.apsusc.2016.02.145
    [19] Lin C C, Chen C J, Chiang R K. Facile synthesis of monodisperse MnO nanoparticles from bulk MnO. J Cryst Growth, 2012, 338(1): 152. doi: 10.1016/j.jcrysgro.2011.10.022
    [20] Morales M A, Skomski R, Fritz S, et al. Surface anisotropy and magnetic freezing of MnO nanoparticles. Phys Rev B, 2007, 75(13): 134423. doi: 10.1103/PhysRevB.75.134423
    [21] Dwight K, Menyuk N. Magnetic properties of Mn3O4 and the canted spin problem. Phys Rev, 1960, 119(5): 1470. doi: 10.1103/PhysRev.119.1470
    [22] Xing Q K, Peng Z J, Wang C B, et al. Doping effect of Y3+ ions on the microstructural and electromagnetic properties of Mn-Zn ferrites. Physica B, 2012, 407(3): 388. doi: 10.1016/j.physb.2011.11.003
  • 加载中
图(4)
计量
  • 文章访问数:  479
  • HTML全文浏览量:  109
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-11
  • 刊出日期:  2018-12-20

目录

    /

    返回文章
    返回