氧化石墨烯复合材料的制备及对铜离子吸附性能的研究

张建民 王晶 张继 李红玑

张建民, 王晶, 张继, 李红玑. 氧化石墨烯复合材料的制备及对铜离子吸附性能的研究[J]. 粉末冶金技术, 2018, 36(6): 445-449,457. doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.008
引用本文: 张建民, 王晶, 张继, 李红玑. 氧化石墨烯复合材料的制备及对铜离子吸附性能的研究[J]. 粉末冶金技术, 2018, 36(6): 445-449,457. doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.008
ZHANG Jian-min, WANG Jing, ZHANG Ji, LI Hong-ji. Preparation of graphene oxide composites and study on adsorption properties of copper ions[J]. Powder Metallurgy Technology, 2018, 36(6): 445-449,457. doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.008
Citation: ZHANG Jian-min, WANG Jing, ZHANG Ji, LI Hong-ji. Preparation of graphene oxide composites and study on adsorption properties of copper ions[J]. Powder Metallurgy Technology, 2018, 36(6): 445-449,457. doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.008

氧化石墨烯复合材料的制备及对铜离子吸附性能的研究

doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.008
基金项目: 

陕西省教育厅专项科研计划资助项目 17JK0327

详细信息
    通讯作者:

    王晶, E-mail: 445217912@qq.com

  • 中图分类号: TB33;O647.3

Preparation of graphene oxide composites and study on adsorption properties of copper ions

More Information
  • 摘要: 通过超声波和磁力搅拌法制备了氧化石墨烯-4A分子筛复合材料(GO-4A), 利用X射线衍射(X-ray diffraction, XRD)、傅里叶变换红外光谱(Fourier transform-infrared spectroscopy, FT-IR) 及扫描电子显微观察(scanning electron microscopy, SEM) 等多种手段对氧化石墨烯复合材料进行表征, 并研究了氧化石墨烯与4A分子筛在GO-4A复合材料中的质量比(复合比例) 对GO-4A吸附铜离子性能的影响。结果表明: 复合比例对GO-4A物相组成影响不大; 4A分子筛的加入会降低氧化石墨烯的团聚程度, 随着复合比例增大, 复合材料的热稳定性不断提高; 当氧化石墨烯和4A分子筛的复合比例为1:5时, 复合效果最佳, 在室温条件下, 溶液pH=6时, 对铜离子的去除效率可达到98.42%。
  • 图  1  不同复合比例制备的GO-4A复合材料X射线衍射光谱

    Figure  1.  X-ray diffraction patterns of GO-4A composites prepared by different component ratios (i.e., the mass fractions of graphene oxide and 4A molecular sieve in GO-4A composites)

    图  2  不同复合比例制备的GO-4A复合材料傅里叶变换红外光谱

    Figure  2.  FT-IR patterns of GO-4A composites prepared by different component ratios

    图  4  不同复合比例制备的GO-4A复合材料显微组织形貌: (a) GO-2; (b) GO-3; (c) GO-4; (d) GO-5; (e) GO-6

    Figure  4.  SEM images of GO-4A composites prepared by different component ratios: (a) GO-2; (b) GO-3; (c) GO-4; (d) GO-5; (e) GO-6

    图  5  不同复合比例制备的GO-4A复合材料热重分析结果

    Figure  5.  Thermogravimetric analysis of GO-4A composites prepared by different component ratios

    图  6  不同复合比例制备的GO-4A复合材料对铜离子去除效率的影响

    Figure  6.  Removal efficiency of Cu2+by GO-4A composites prepared by different component ratios

    表  2  不同复合比例制备的GO-4A复合材料傅里叶变换红外光谱分析结果

    Table  2.   FT-IR analysis results of GO-4A composites prepared by different component ratios  cm-1

    试样 O-H伸缩振动 O-H弯曲振动 C=C伸缩振动 C-OH伸缩振动 C-H伸缩振动 4A分子筛内部双四元环的特征振动
    GO-2 3393 1643 1551 1075 934 589
    GO-3 3387 1643 1555 1079 934 589
    GO-4 3377 1636 1534 1065 940 590
    GO-5 3382 1633 1541 1065 930 586
    GO-6 3390 1640 1535 1062 580
    下载: 导出CSV
  • [1] Zhang J M, Wang A N, Li H J, et al. Influence on the structure and methylene blue adsorption of graphite oxide prepared by three modified Hummers methods. Powder Metall Technol, 2018, 36(1): 16 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201801003.htm

    张建民, 王阿宁, 李红玑, 等. 三种改性Hummers法对氧化石墨结构和亚甲基蓝吸附性能的影响. 粉末冶金技术, 2018, 36(1): 16 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201801003.htm
    [2] Zhang G X. Effects of copper-coated graphite content and particle size on properties of the Cu/copper-coated graphite composite. Powder Metall Technol, 2016, 34(3): 196 doi: 10.3969/j.issn.1001-3784.2016.03.007

    张国玺. 石墨含量及粒度对铜-镀铜石墨复合材料性能的影响. 粉末冶金技术, 2016, 34(3): 196 doi: 10.3969/j.issn.1001-3784.2016.03.007
    [3] Chabot V, Higgins D, Yu A, et al. A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ Sci, 2014, 7(5): 1564. doi: 10.1039/c3ee43385d
    [4] Liu L. Study on the Preparation of Montmorillonite-Pillared Graphene Oxide Composites and the Adsorption of Pollutants in Water[Dissertation]. Guangzhou: Jinan University, 2015

    刘露. 蒙脱土柱撑氧化石墨烯的制备及对水中污染物的吸附性能, 广州: 暨南大学, 2015
    [5] Wang H, Yuan X, Wu Y, et al. Adsorption characteristics and behaviors of graphite oxide for Zn(Ⅱ)removal from aqueous solution. Appl Surf Sci, 2013, 279(8): 432. http://smartsearch.nstl.gov.cn/paper_detail.html?id=a682120f4c43aee4b45698e359dbb952
    [6] Perreault F, Fonseca de F A, Elimelech M. Environmental applications of graphene-based nanomaterials. Chem Soc Rev, 2015, 44(16): 5861. doi: 10.1039/C5CS00021A
    [7] Xiao L, Wang W L, Yu S L, et al. Graphene-containing composite materials for water treatment. Prog Chem, 2013, 25(2-3): 419 https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ2013Z1024.htm

    肖蓝, 王炜龙, 于水利, 等. 石墨烯及其复合材料在水处理中的应用. 化学进展, 2013, 25(2-3): 419 https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ2013Z1024.htm
    [8] Liu F, Chung S, Oh G, et al. Three-dimensional graphene oxide nanostructure for fast and efficient water-soluble dye removal. ACS Appl Mater Interfaces, 2012, 4(2): 922. doi: 10.1021/am201590z
    [9] Reddy D A, Ma R, Choi M Y, et al. Reduced graphene oxide wrapped ZnS-Ag2S ternary composites synthesized via hydrothermal method: Applications in photocatalyst degradation of organic pollutants. Appl Surf Sci, 2015, 324: 725. doi: 10.1016/j.apsusc.2014.11.026
    [10] Zhao G, Ren X, Gao X, et al. Removal of Pb(Ⅱ)ions from aqueous solutions on few-layeredgraphene oxide nanosheets. J Dalton Transactions, 2011, 40(41): 10945. doi: 10.1039/c1dt11005e
    [11] Gui H, Tan W, Li B, et al. Removal ammonia-nitrogen from medium-low concentration wastewater by 4A zeolite molecular sieve. Chin J Environ Eng, 2014, 8(5): 1944 https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201405042.htm

    桂花, 谭伟, 李彬, 等. 4A沸石分子筛处理中低浓度氨氮废水. 环境工程学报, 2014, 8(5): 1944 https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201405042.htm
    [12] Dang R. Experimental Study on Removing Phosphorus by Natural and Modified Zeolite[Dissertation]. Lanzhou: Lanzhou Jiaotong University, 2015

    党瑞. 天然及改性沸石去除水中磷的实验研究, 兰州: 兰州交通大学, 2015
    [13] Li Y. Ion Exchange and Adsorption Performance of Zeolite[Dissertation]. Taiyuan: Taiyuan University of Technology, 2009

    李妍. 分子筛分子筛离子交换及其吸附性能研究, 太原: 太原理工大学, 2009
    [14] Ao X, Liu H, Wang Q, et al. Adsorption of Cd(Ⅱ)in aqueous solution by granular 4A molecular sieve/attapulgite. Technol Water Treat, 2017(9): 62 https://www.cnki.com.cn/Article/CJFDTOTAL-SCLJ201709013.htm

    敖翔, 刘红, 汪茜, 等. 4A分子-凹凸棒土颗粒对水中Cd(Ⅱ)的吸附. 水处理技术, 2017(9): 62 https://www.cnki.com.cn/Article/CJFDTOTAL-SCLJ201709013.htm
    [15] Su D F. Synthesis and Adsorption Properties of Metal-Organic Frameworks(MIL-53)/4A Zeolite Material[Dissertation]. Beijing: Beijing Jiaotong University, 2017

    苏东方. 金属有机骨架(MIL-53)/4A沸石复合材料的制备及其吸附性能的研究, 北京: 北京交通大学, 2017
    [16] Peng L Q, Xie J H, Guo C, et al. Review of characterization methods of graphene. J Funct Mater, 2013, 44(21): 3055 doi: 10.3969/j.issn.1001-9731.2013.21.001

    彭黎琼, 谢金花, 郭超, 等. 石墨烯的表征方法. 功能材料, 2013, 44(21): 3055 doi: 10.3969/j.issn.1001-9731.2013.21.001
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  163
  • HTML全文浏览量:  77
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-21
  • 刊出日期:  2018-12-20

目录

    /

    返回文章
    返回