花状Co–Ni氢氧化物电极材料的制备与电化学特性

吕易楠 董桂霞 亢静锐 李雷 李宗峰 张艳梅

吕易楠, 董桂霞, 亢静锐, 李雷, 李宗峰, 张艳梅. 花状Co–Ni氢氧化物电极材料的制备与电化学特性[J]. 粉末冶金技术, 2018, 36(6): 450-457. doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.009
引用本文: 吕易楠, 董桂霞, 亢静锐, 李雷, 李宗峰, 张艳梅. 花状Co–Ni氢氧化物电极材料的制备与电化学特性[J]. 粉末冶金技术, 2018, 36(6): 450-457. doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.009
LÜ Yi-nan, DONG Gui-xia, KANG Jing-rui, LI Lei, LI Zong-feng, ZHANG Yan-mei. Preparation and electrochemical performances of flower-like Co–Ni double hydroxide electrode materials[J]. Powder Metallurgy Technology, 2018, 36(6): 450-457. doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.009
Citation: LÜ Yi-nan, DONG Gui-xia, KANG Jing-rui, LI Lei, LI Zong-feng, ZHANG Yan-mei. Preparation and electrochemical performances of flower-like Co–Ni double hydroxide electrode materials[J]. Powder Metallurgy Technology, 2018, 36(6): 450-457. doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.009

花状Co–Ni氢氧化物电极材料的制备与电化学特性

doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.009
详细信息
    通讯作者:

    董桂霞, E-mail: dgxdgx01@163.com

  • 中图分类号: TM53

Preparation and electrochemical performances of flower-like Co–Ni double hydroxide electrode materials

More Information
  • 摘要: 采用原位生长法, 以硝酸钴和氨水为原料、硝酸铵为生长剂, 制备生长在泡沫镍上的Co (OH)2电极材料, 并在此基础上对其进行镍添加改性, 旨在得到比电容高、循环性能好的Co–Ni氢氧化物电极材料。通过X射线衍射仪、扫描电子显微镜对Co–Ni氢氧化物电极材料进行物相和微观形貌分析; 通过循环伏安、恒流充放电和交流阻抗等方法对Co–Ni氢氧化物电极材料的电化学性能进行分析和表征。结果表明: 镍添加使材料从原有的Co (OH) 2晶相变为Co (OH) 2和Ni (OH) 2双晶相材料, 使原有的簇状结构转变为更利于离子扩散的花状结构, 进而促进材料电化学性能的提高。当Co/Ni摩尔比为3:1时制得的花状Co–Ni氢氧化物电极材料的电化学性能最好, 在5 m V·s-1扫速下的比电容值为3674.7 F·g-1, 在5 A·g-1电流密度下的比电容值为1450.0 F·g-1, 在20 A·g-1电流密度下循环5000次的比电容保持率为77.1%。
  • 图  1  添加不同摩尔比镍的Co (OH) 2X射线衍射图

    Figure  1.  X-ray diffraction patterns of Co (OH) 2 added by nickel in different mole fractions

    图  2  纯Co (OH) 2电极材料、添加不同摩尔分数Ni的Co (OH) 2电极材料和Co–Ni–3–1循环5000次后的扫描电子显微形貌: (a) Co (OH)2–Pure; (b) Co–Ni–6–1; (c) Co–Ni–5–1; (d) Co–Ni–4–1; (e) Co–Ni–3–1; (f) Co–Ni–3–1循环5000次

    Figure  2.  SEM images of pure Co (OH) 2, Co (OH) 2 electrode materials added by nickel in different mole fractions, and Co–Ni–3–1 after5000 cycles: (a) Co (OH) 2–Pure; (b) Co–Ni–6–1; (c) Co–Ni–5–1; (d) Co–Ni–4–1; (e) Co–Ni–3–1; (f) Co–Ni–3–1 after 5000 cycles

    图  3  Co–Ni–3–1循环5000次前后扫描电子显微图选定区域能谱图: (a) Co–Ni–3–1; (b) Co–Ni–3–1循环5000次

    Figure  3.  EDS patterns of selected region pots in SEM images of Co–Ni–3–1 before and after 5000 cycles: (a) Co–Ni–3–1 before 5000cycles; (b) Co–Ni–3–1 after 5000 cycles

    图  4  添加不同摩尔分数镍的Co (OH) 2电极材料在10 mV·s-1扫速下(a) 和Co/Ni摩尔比为3:1时的Co–Ni氢氧化物电极材料在不同扫速下的循环伏安图(b)

    Figure  4.  CV curves of Co (OH) 2 electrode materials added by nickel in different mole fractions at 10 mV·s-1 (a) and Co–Ni hydroxide electrode materials with a Co/Ni mole ratio of 3:1 at various scan rates (b)

    图  5  添加不同摩尔分数镍的Co (OH) 2电极材料在10 A·g-1下(a) 和Co/Ni摩尔比为3:1时的Co–Ni氢氧化物电极材料在不同电流密度下的恒流充放电图(b)

    Figure  5.  CP curves of Co (OH) 2 electrode materials added by nickel in different mole fractions at 10 A·g-1 (a) and Co–Ni hydroxide with a Co/Ni mole ratio of 3:1 at various current density (b)

    图  6  不同Co/Ni摩尔比的Co–Ni氢氧化物电极材料的交流阻抗图(右上方为高频区域放大图, 右下方为等效电路图)

    Figure  6.  EIS plots of Co–Ni hydroxide electrode materials added by nickel in different mole fractions (top inset: enlarged view of high frequency region, bottom inset: equivalent circuit)

    图  7  纯Co (OH) 2 (a) 和Co–Ni–3–1 (b) 在100 mV·s-1扫速下的循环伏安曲线以及纯Co (OH) 2 (c) 和Co–Ni–3–1 (d) 在20A·g-1下的恒流充放电曲线

    Figure  7.  CV curves of Co (OH) 2‒Pure (a) and Co–Ni–3–1 (b) at 100 mV·s-1 and CP curves of Co (OH) 2‒Pure (c) and Co–Ni–3–1 (d) at20 A·g-1

    表  1  添加不同摩尔分数镍的Co–Ni氢氧化物电极材料在不同扫描速率下的比电容

    Table  1.   Specific capacitance values of Co–Ni hydroxide electrode materials added by nickel in different mole fractions at different scanning rates

    试样 比电容/(F·g-1)
    5mV·s-1 10mV·s-1 20mV·s-1 50mV·s-1
    Co(OH)2–Pure 1539.1 1226.8 765.4 471.1
    Co–Ni–3–1 3674.7 3346.1 2928.3 2217.4
    Co–Ni–4–1 1277.2 1046.0 923.5 611.6
    Co–Ni–5–1 2899.8 2455.0 1912.0 1139.1
    Co–Ni–6–1 3190.8 2778.6 2321.7 1585.2
    下载: 导出CSV

    表  2  不同电流密度下Co–Ni–3–1的比电容

    Table  2.   Specific capacitance of Co–Ni–3–1 at various current density

    电流密度/(A·g-1) 比电容/(F·g-1)
    2 1575
    5 1450
    10 1340
    20 1180
    50 825
    100 525
    200 150
    下载: 导出CSV
  • [1] Chen S M, Ramachandran R, Mani V, et al. Recent advancements in electrode materials for the high-performance electrochemical supercapacitors: a review. Int J Electrochem Sci, 2014, 9(8): 4072. http://www.researchgate.net/publication/265172767_Recent_Advancements_in_Electrode_Materials_for_the_High-performance_Electrochemical_Supercapacitors_A_Review
    [2] Tang Z, Tang C H, Gong H. A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes. Adv Funct Mater, 2012, 22(6): 1272. doi: 10.1002/adfm.201102796
    [3] Liu J P, Jiang J, Cheng C W, et al. Co3O4 nanowire@MnO2ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv Mater, 2011, 23(18): 2076. doi: 10.1002/adma.201100058
    [4] Chen K F, Xue D F. Colloidal supercapacitor electrode materials. Mater Res Bull, 2016, 83: 201. doi: 10.1016/j.materresbull.2016.06.013
    [5] Wang Y, Guo J, Wang T F, et al. Mesoporous transition metal oxides for supercapacitors. Nanomaterials, 2015, 5(4): 1667. doi: 10.3390/nano5041667
    [6] Wan H Z, Miao L, Xu K, et al. Manganese oxide-based electrode behavior as materials for electrochemical supercapacitors. CIESC J, 2013, 64(3): 801 doi: 10.3969/j.issn.0438-1157.2013.03.004

    万厚钊, 缪灵, 徐葵, 等. MnO2基超级电容器电极材料. 化工学报, 2013, 64(3): 801 doi: 10.3969/j.issn.0438-1157.2013.03.004
    [7] Zhu G Y, Chen J, Zhang Z Q, et al. NiO nanowall-assisted growth of thick carbon nanofiber layers on metal wires for fiber supercapacitors. Chem Commun, 2016, 52(13): 2721. doi: 10.1039/C5CC10113A
    [8] Wang Y, Shi Z Q, Huang Y, et al. Supercapacitor devices based on graphene materials. J Phys Chem C, 2009, 113(30): 13103. doi: 10.1021/jp902214f
    [9] Wu Z S, Zhou G M, Yin L C, et al. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy, 2012, 1(1): 107. doi: 10.1016/j.nanoen.2011.11.001
    [10] Xu B, Zhang H, Cao G P, et al. Carbon materials for supercapacitors. Prog Chem, 2011, 23(2-3): 605 https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ2011Z1038.htm

    徐斌, 张浩, 曹高萍, 等. 超级电容器炭电极材料的研究. 化学进展, 2011, 23(2-3): 605 https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ2011Z1038.htm
    [11] Hu J Y, Qian F, Song G S, et al. Hierarchical heterostructures of NiCo2O4@XMoO4(X=Ni, Co)as an electrode material for high-performance supercapacitors. Nanoscale Res Lett, 2016, 11(1): 257. doi: 10.1186/s11671-016-1475-9
    [12] Li M, Cheng J P, Wang J, et al. The growth of nickel-manganese and cobalt-manganese layered double hydroxides on reduced graphene oxide for supercapacitor. Electrochim Acta, 2016, 206: 108. doi: 10.1016/j.electacta.2016.04.084
    [13] Gupta V, Gupta S, Miura N. Electrochemically synthesized large area network of CoxNiyAlz layered triple hydroxides nanosheets: A high performance supercapacitor. J Power Sources, 2009, 189(2): 1292. doi: 10.1016/j.jpowsour.2009.01.026
    [14] Cheng J P, Fang J H, Li M, et al. Enhanced electrochemical performance of CoAl-layered double hydroxide nanosheet arrays coated by platinum films. Electrochim Acta, 2013, 114: 68. doi: 10.1016/j.electacta.2013.10.029
    [15] Pu J, Tong Y, Wang S B, et al. Nickel-cobalt hydroxide nanosheets arrays on Ni foam for pseudocapacitor applications. J Power Sources, 2014, 250: 250. doi: 10.1016/j.jpowsour.2013.10.108
    [16] Jagadale A D, Jamadade V S, Pusawale S N, et al. Effect of scan rate on the morphology of potentiodynamically depositedβ-Co(OH)2 and corresponding supercapacitive performance. Electrochim Acta, 2012, 78: 92. doi: 10.1016/j.electacta.2012.05.137
    [17] Yu Z J, Dai Y, Chen W. Electrochemical deposited nanoflakes Co(OH)2 porous films for electrochemical capacitors. J Chin Chem Soc, 2010, 57(3A): 423. doi: 10.1002/jccs.201000063
    [18] Yan T, Zhu H Y, Li R Y, et al. Microwave synthesis of nickel/cobalt double hydroxide ultrathin flowerclusters with three-dimensional structures for high-performance supercapacitors. Electrochim Acta, 2013, 111: 71. doi: 10.1016/j.electacta.2013.07.215
    [19] Zhang J, Wang X C, Ma J, et al. Preparation of cobalt hydroxide nanosheets on carbon nanotubes/carbon paper conductive substrate for supercapacitor application. Electrochim Acta, 2013, 104: 110. doi: 10.1016/j.electacta.2013.04.052
    [20] Guo X L, Liu X Y, Hao X D, et al. Nickel-manganese layered double hydroxide nanosheets supported on nickel foam for high-performance supercapacitor electrode materials. Electrochim Acta, 2016, 194: 179. doi: 10.1016/j.electacta.2016.02.080
    [21] Sun Z H, Yuan A B. Electrochemical performance of nickel hydroxide/activated carbon supercapacitors using a modified polyvinyl alcohol based alkaline polymer electrolyte. Chin J Chem Eng, 2009, 17(1): 150. doi: 10.1016/S1004-9541(09)60047-1
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  96
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-05
  • 刊出日期:  2018-12-20

目录

    /

    返回文章
    返回