铁锰无磁合金粉的水雾化法生产工艺研究

高莹 顾毅 吴艺辉 李辉 马春生 赵全 李丹

高莹, 顾毅, 吴艺辉, 李辉, 马春生, 赵全, 李丹. 铁锰无磁合金粉的水雾化法生产工艺研究[J]. 粉末冶金技术, 2018, 36(6): 465-469. doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.011
引用本文: 高莹, 顾毅, 吴艺辉, 李辉, 马春生, 赵全, 李丹. 铁锰无磁合金粉的水雾化法生产工艺研究[J]. 粉末冶金技术, 2018, 36(6): 465-469. doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.011
GAO Ying, GU Yi, WU Yi-hui, LI Hui, MA Chun-sheng, ZHAO Quan, LI Dan. Research on production technology of nonmagnetic Fe-Mn alloy powders by water atomization[J]. Powder Metallurgy Technology, 2018, 36(6): 465-469. doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.011
Citation: GAO Ying, GU Yi, WU Yi-hui, LI Hui, MA Chun-sheng, ZHAO Quan, LI Dan. Research on production technology of nonmagnetic Fe-Mn alloy powders by water atomization[J]. Powder Metallurgy Technology, 2018, 36(6): 465-469. doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.011

铁锰无磁合金粉的水雾化法生产工艺研究

doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.011
详细信息
  • 中图分类号: TF123.71

Research on production technology of nonmagnetic Fe-Mn alloy powders by water atomization

  • 摘要: 采用水雾化法制备铁锰无磁合金粉末, 分析了合金粉末含锰质量分数和雾化工艺对铁锰合金粉末性能的影响规律。结果表明: 水雾化法生产铁锰无磁合金粉的方案可行, 但锰质量分数不宜低于24%;在实验工况条件下, 雾化压力对松装密度的影响可以忽略不计, 雾化压力提高使产品流动性变差, 以15 MPa雾化压力进行生产时, 产品工艺性能(松装密度、流动性) 最好; 雾化压力的提高有助于提高产品烧结密度, 在满足产品流动性要求的前提下, 可以考虑通过提高雾化压力来提高产品烧结密度。
  • 图  1  配料及制粉工艺方案

    Figure  1.  Experimental scheme of blending process and powder preparation

    图  2  水雾化制粉工艺流程

    Figure  2.  Technical process of powder preparation by water atomization

    图  3  磁重比测试仪示意图

    Figure  3.  Schematic diagram of magnetic-weight ratio tester

    图  4  磁重比与锰质量分数曲线图

    Figure  4.  Relationship of magnetic-weight ratio and manganese content by mass

    图  5  雾化压力对产品性能的影响: (a) D50; (b) 松装密度; (c) 流动性

    Figure  5.  Influence of atomizationpressureontheper for manceofproducts: (a) D50; (b) loose density; (c) flowability

    图  6  雾化压力(a) 和D50 (b) 对烧结密度的影响

    Figure  6.  Influences of atomization pressure (a) and D50 (b) on the sintered density of products

    表  1  性能测试项目

    Table  1.   Performance test schedule

    锰质量分数/% 磁重比 粒度 松装密度 流动性 烧结密度
    18
    22
    24
    26
    30
    下载: 导出CSV
  • [1] Li C S, Ma B, Song Y L, et al. The research progress and development ideas of non-magnetic steels in China. Henan Metall, 2014, 22(1): 1 doi: 10.3969/j.issn.1006-3129.2014.01.001

    李长生, 马彪, 宋艳磊, 等. 无磁钢的研究概况和我国无磁钢的发展思路. 河南冶金, 2014, 22(1): 1 doi: 10.3969/j.issn.1006-3129.2014.01.001
    [2] Chu F M, Li C L, Li M D. Research on manganese subgroup nonmagnetic cast iron. Hot Working Technol, 2002(6): 48 doi: 10.3969/j.issn.1001-3814.2002.06.021

    初福民, 李长龙, 李明弟. 锰系无磁铸铁的研制. 热加工工艺, 2002(6): 48 doi: 10.3969/j.issn.1001-3814.2002.06.021
    [3] Zhang J. Design and Selection of Material System for Non-magnetic Engine[Dissertation]. Wuhan: Huazhong University of Science and Technology, 2007

    张军. 无磁发动机材料体系的设计与研究, 武汉: 华中科技大学, 2007
    [4] Zhang X D, Xie B, Zou Y, et al. Manufacturing process of retaining ring forging for electric motor. Heavy Cast Forg, 2016(4): 49 doi: 10.3969/j.issn.1004-5635.2016.04.015

    张旭东, 谢斌, 邹颖, 等. 电动机护环锻件的制造工艺. 大型铸锻件, 2016(4): 49 doi: 10.3969/j.issn.1004-5635.2016.04.015
    [5] Liu H. Research on forging process of ultra large variable cross-section hollow spindle forgings. Heavy Cast Forg, 2015(6): 39 doi: 10.3969/j.issn.1004-5635.2015.06.013

    刘贺. 超大型变截面内孔空心主轴锻件锻造工艺研究. 大型铸锻件, 2015(6): 39 doi: 10.3969/j.issn.1004-5635.2015.06.013
    [6] Zhao X W. Study on Machinability of Non-magnetic Materials Used in Engine[Dissertation]. Wuhan: Huazhong University of Science and Technology, 2008

    赵小巍. 发动机无磁材料的可切削加工性研究, 武汉: 华中科技大学, 2008
    [7] Ermakov B S, Khoroshailov V G. Influence of alloy elements on the properties of manganese steels in the293-4°K temperature range. Met Sci Heat Treat, 1985, 27(3): 213. doi: 10.1007/BF00699655
    [8] Bae C, Kim R, Lee U H, et al. Precipitation effect on mechanical properties and phase stability of high manganese steel. Metall Mater Trans A, 2017, 49: 4072. doi: 10.1007/s11661-017-4168-9
    [9] Song B J, Wang J G, Bai H H, et al. Melting of high Mn and nonmagnetic steel 40Mn18Cr3. China Heavy Equip, 2015(1): 40 https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJK201501022.htm

    宋部军, 王俊国, 白海虎. 高锰无磁钢40Mn18Cr3的冶炼. 中国重型装备, 2015(1): 40 https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJK201501022.htm
    [10] Li C S, Xu X F, Ma B, et al. Experimental study on the non-magnetic high magnetism steel 30Mn26Al4V. China Sciencepap, 2012, 7(2): 89 doi: 10.3969/j.issn.2095-2783.2012.02.002

    李长生, 徐新芳, 马彪, 等. 30Mn26Al4V高锰无磁钢的实验研究. 中国科技论文, 2012, 7(2): 89 doi: 10.3969/j.issn.2095-2783.2012.02.002
    [11] Wang M, Zhou C M, Yao C G, et al. Study on50Mn18Cr4V steel with high manganese and low magnetic. Hot Working Technol, 2008, 37(18): 69 doi: 10.3969/j.issn.1001-3814.2008.18.023

    王敏, 周超梅, 姚长贵, 等. 高锰无磁钢50Mn18Cr4V的研究. 热加工工艺, 2008, 37(18): 69 doi: 10.3969/j.issn.1001-3814.2008.18.023
    [12] Yu X, Wen G H, Tang P, et al. Behavior of mold slag used for 20Mn23Al nonmagnetic steel during casting. J Iron Steel Res Int, 2011, 18(1): 20. doi: 10.1016/S1006-706X(11)60005-8
    [13] Sipos K, Remy L, Pineau A. Influence of austenite predeformationon mechanical properties and strain-induced martensitic transformations of a high manganese steel. Metall Trans A, 1976, 7(5): 857. doi: 10.1007/BF02644083
    [14] Ma G B. Improving the qualification of magnetic conductivity of nonmagnetic steel A based on the method of the lean six sigma. Shanxi Metall, 2016(4): 34 https://www.cnki.com.cn/Article/CJFDTOTAL-SDYZ201604012.htm

    马贵斌. 采用精益六西格玛方法提高无磁钢A磁导率合格率. 山西冶金, 2016(4): 34 https://www.cnki.com.cn/Article/CJFDTOTAL-SDYZ201604012.htm
    [15] Song Y P. Research on Non-magnet Magnetic Liner Strengthen and its Mechanism[Dissertation]. Zhenjiang: Jiangsu University of Science and Technology, 2013

    宋艳萍. 无磁钢磁性衬板强化及其机理研究, 镇江: 江苏科技大学, 2013
    [16] Neal M, Raman B, Patrick K. Sintering of MIMFe-2Ni-0.8C. Powder Metall Technol, 2016, 34(3): 232 doi: 10.3969/j.issn.1001-3784.2016.03.015

    Neal M, Raman B, Patrick K. MIM Fe-2Ni-0.8C的烧结. 粉末冶金技术, 2016, 34(3): 232 doi: 10.3969/j.issn.1001-3784.2016.03.015
    [17] Gu Y, Li H, Jiang X, et al. Research on application of silicon in iron-copper alloy powder production by atomization process. Diamond Abras Eng, 2016, 36(3): 69 https://www.cnki.com.cn/Article/CJFDTOTAL-JGSM201603014.htm

    顾毅, 李辉, 蒋鑫, 等. 硅铁在水雾化铁铜40粉末生产中的脱氧应用研究. 金刚石与磨料磨具工程, 2016, 36(3): 69 https://www.cnki.com.cn/Article/CJFDTOTAL-JGSM201603014.htm
    [18] Lu S. Research on the Application of Fe-Mn Based Austenite Non-magnetic Steel in Energy-saving Electric Power Fittings[Dissertation]. Zhenjiang: Jiangsu University, 2006

    陆松华. Fe-Mn基奥氏体无磁钢在节能电力金具上的应用研究, 镇江: 江苏大学, 2006
    [19] Li Z X, Cao J Y, Jun T, et al. The key factor of high manganese steel production process control measures. Casting, 2008(1-2): 80 https://www.cnki.com.cn/Article/CJFDTOTAL-JXRG2008Z1034.htm

    李志翔, 曹菊艳, 俊涛, 等. 高锰钢生产关键工艺控制措施. 铸造, 2008(1-2): 80 https://www.cnki.com.cn/Article/CJFDTOTAL-JXRG2008Z1034.htm
    [20] Ruan J M, Huang P Y. Powder Metallurgy Principle. Beijing: China Machine Press, 2012

    阮建明, 黄培云. 粉末冶金原理. 北京: 机械工业出版社, 2012
    [21] Xie C D, Chen W. Study on production process of water atomized copper-0.3 lanthanum powders. Powder Metall Technol, 2011, 29(4): 279 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201104009.htm

    解传娣, 陈文. 水雾化Cu-0.3La预合金粉制备工艺研究. 粉末冶金技术, 2011, 29(4): 279 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201104009.htm
    [22] Wu W H, Wu K Q, Xiao Y F, et al. Effect of atomization pressure on the properties of 316L stainless steel powders used in 3D printing. Powder Metall Technol, 2017, 35(2): 83 doi: 10.3969/j.issn.1001-3784.2017.02.001

    吴文恒, 吴凯琪, 肖逸凡, 等. 气雾化压力对3D打印用316L不锈钢粉末性能的影响. 粉末冶金技术, 2017, 35(2): 83 doi: 10.3969/j.issn.1001-3784.2017.02.001
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  287
  • HTML全文浏览量:  98
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-13
  • 刊出日期:  2018-12-20

目录

    /

    返回文章
    返回