碳酸银及其异质结构的研究进展

蔡永丰 郑晓艺 常石岩 吕朝霞 李锋锋 沈毅 郭明月 王进 汪路夷 赵都少

蔡永丰, 郑晓艺, 常石岩, 吕朝霞, 李锋锋, 沈毅, 郭明月, 王进, 汪路夷, 赵都少. 碳酸银及其异质结构的研究进展[J]. 粉末冶金技术, 2018, 36(6): 470-474. doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.012
引用本文: 蔡永丰, 郑晓艺, 常石岩, 吕朝霞, 李锋锋, 沈毅, 郭明月, 王进, 汪路夷, 赵都少. 碳酸银及其异质结构的研究进展[J]. 粉末冶金技术, 2018, 36(6): 470-474. doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.012
CAI Yong-feng, ZHENG Xiao-yi, CHANG Shi-yan, LV Chao-xia, LI Feng-feng, SHEN Yi, GUO Ming-yue, WANG Jin, WANG Lu-yi, ZHAO Dou-shao. Research progress of silver carbonate and its heterostructure[J]. Powder Metallurgy Technology, 2018, 36(6): 470-474. doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.012
Citation: CAI Yong-feng, ZHENG Xiao-yi, CHANG Shi-yan, LV Chao-xia, LI Feng-feng, SHEN Yi, GUO Ming-yue, WANG Jin, WANG Lu-yi, ZHAO Dou-shao. Research progress of silver carbonate and its heterostructure[J]. Powder Metallurgy Technology, 2018, 36(6): 470-474. doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.012

碳酸银及其异质结构的研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2018.06.012
基金项目: 

华北理工大学研究生创新资助项目 2018S06

国家自然科学基金资助项目 51772099

国家自然科学基金资助项目 51572069

河北省科技厅资助项目 16273816

详细信息
    通讯作者:

    沈毅, E-mail: shenyicyf@126.com

  • 中图分类号: O643.36

Research progress of silver carbonate and its heterostructure

More Information
  • 摘要: 碳酸银是一种新型银系半导体光催化材料, 具有良好的催化性能, 在与其他半导体复合形成异质结构后, 催化性能和稳定性均有所提升。本文综述了碳酸银光催化材料的发展、碳酸银基异质结的制备方法和增强机理, 并对该材料的发展前景做出展望。
  • 图  1  AgCl/Ag2CO3 Ⅰ型异质结

    Figure  1.  Type Ⅰ heterojunction of AgCl/Ag2CO3

    图  2  TiO2/Ag2CO3 Ⅰ型异质结

    Figure  2.  Type Ⅰ heterojunction of TiO2/Ag2CO3

    图  3  Ag2CO3基Ⅱ型异质结

    Figure  3.  Ag2CO3-based type Ⅱ heterojunction

  • [1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37. doi: 10.1038/238037a0
    [2] Yi Z G, Ye J H, Kikugawa N, et al. An orthophosphate semiconductor with photooxidation properties under visible-light rradiation. Nat Mater, 2010, 9(7): 559. doi: 10.1038/nmat2780
    [3] Zeng X F, Wang M H, Lu Y L, et al. Synthesis and enhanced photocatalytic activity of TiO2 pillared graphene nanocomposites. Powder Mater Technol, 2018, 36(2): 130 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201802009.htm

    曾雄丰, 王梦幻, 路彦丽, 等. TiO2柱撑石墨烯复合材料的制备及光催化性能. 粉末冶金技术, 2018, 36(2): 130 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201802009.htm
    [4] Slager T L, Lindgren B J, Mallmann A J, et al. Infrared spectra of the oxides and carbonates of silver. J Phys Chem C, 1972, 76(6): 940. doi: 10.1021/j100650a029
    [5] Bell A T. The impact of nanoscience on heterogeneous catalysis. Science, 2003, 299(5613): 1688. doi: 10.1126/science.1083671
    [6] Xu C W, Liu Y Y, Huang B B, et al. Preparation, characterization, and photocatalytic properties of silver carbonate. Appl Surf Sci, 2011, 257(20): 8732. doi: 10.1016/j.apsusc.2011.05.060
    [7] Dai G P, Yu J G, Liu G. A new approach for photocorrosion inhibition of Ag2CO3 photocatalyst with highly visible-light-responsive reactivity. J Phys Chem C, 2012, 116(29): 15519. doi: 10.1021/jp305669f
    [8] Dong H J, Chen G, Sun J X, et al. A novel high-efficiency visible-light sensitive Ag2CO3 photocatalyst with universal photodegradation performances: Simple synthesis, reaction mechanism and first-principles study. Appl Catal B, 2013, 134-135(5): 46. http://www.sciencedirect.com/science/article/pii/S0926337312006091
    [9] Mohaghegh N, Eshaghi B, Rahimi E, et al. Ag2CO3sensitized TiO2 nanoparticles prepared in ionic liquid medium: A new Ag2CO3/TiO2/RTIL heterostructure with highly efficient photocatalytic activity. J Mol Catal AChem, 2015, 406: 152. doi: 10.1016/j.molcata.2015.06.004
    [10] Yu C L, Wei L F, Chen J C, et al. Enhancing the photocatalytic performance of commercial TiO2 crystals by coupling with trace narrow-band-gap Ag2CO3. Ind Eng Chem Res, 2014, 53(14): 5759. doi: 10.1021/ie404283d
    [11] Wen X J, Niu C G, Zhang L, et al. Photocatalytic degradation of ciprofloxacin by a novel Z-scheme CeO2-Ag/AgBr photocatalyst: Influencing factors, possible degradation pathways, and mechanism insight. JCatal, 2018, 358: 141.
    [12] Mehraj O, Mir N A, Pirzada B M, et al. In-situ anion exchange synthesis of AgBr/Ag2CO3 hybrids with enhanced visible light photocatalytic activity and improved stability. J Mol Catal A Chem, 2014, 395: 16. doi: 10.1016/j.molcata.2014.07.027
    [13] Wang P F, Wu T F, Ao Y H, et al. One-pot synthesis of Ag2CO3 heterojunctions with enhanced visible-light photocatalytic activity. Mater Lett, 2016, 163: 258. doi: 10.1016/j.matlet.2015.10.050
    [14] Xie J S, Fang C, Zou J J, et al. In situ ultrasonic formation of AgBr/Ag2CO3 nanosheets composite with enhanced visible-driven photocatalytic performance. Mater Lett, 2016, 170: 62. doi: 10.1016/j.matlet.2016.02.002
    [15] Yu C L, Wei L F, Chen J C, et al. Novel AgCl/Ag2CO3heterostructured photocatalysts with enhanced photocatalytic performance. Rare Met, 2016, 35(6): 475. doi: 10.1007/s12598-014-0431-z
    [16] Yu C L, Wei L F, Zhou W Q, et al. Enhancement of the visible light activity and stability of Ag2CO3 by formation of AgI/Ag2CO3 heterojunction. Appl Surf Sci, 2014, 319(30): 312.
    [17] Fa W J, Wang P, Yue B, et al. Ag3PO4/Ag2CO3 p-n heterojunction composites with enhanced photocatalytic activity under visible light. Chin J Catal, 2015, 36(12): 2186 https://www.cnki.com.cn/Article/CJFDTOTAL-CHUA201512018.htm

    法文君, 王平, 岳冰, 等. Ag3PO4/Ag2CO3 p-n异质结复合光催化剂的制备及增强的可见光催化性能. 催化学报, 2015, 36(12): 2186 https://www.cnki.com.cn/Article/CJFDTOTAL-CHUA201512018.htm
    [18] Yu X, Gao L, Huang J, et al. Construction of hybrid Ag2CO3/AgVO3 nanowires with enhanced visible light photocatalytic activity. Mater Res Bull, 2018, 101: 246. doi: 10.1016/j.materresbull.2018.01.023
    [19] Wang J, Dong C, Jiang B B, et al. Preparation of visible light-driven Ag2CO3/BiOBr composite photocatalysts with universal degradation abilities. Mater Lett, 2014, 131(12): 108. http://www.sciencedirect.com/science/article/pii/S0167577X14009653
    [20] Fang S S, Ding C Y, Liang Q, et al. In-situ precipitation synthesis of novel BiOCl/Ag2CO3 hybrids with highly efficient visible-light-driven photocatalytic activity. JAlloys Compd, 2016, 684: 230. doi: 10.1016/j.jallcom.2016.05.168
    [21] Liu Y, Kong J J, Yuan J L, et al. Enhanced photocatalytic activity over flower-like sphere Ag/Ag2CO3/BiVO4plasmonic heterojunction photocatalyst for tetracycline degradation. Chem Eng J, 2017, 40(41): 10822. http://www.sciencedirect.com/science/article/pii/S1385894717314559
    [22] Asadollahi A, Sohrabnezhad S, Ansari R. Enhancement of photocatalytic activity and stability of Ag2CO3 by formation of AgBr/Ag2CO3 heterojunction in mordenite zeolite. Adv Powder Technol, 2017, 28(1): 304. doi: 10.1016/j.apt.2016.10.004
    [23] Méndez M A, Súarez M F, Cortés M T, et al. Electrochemical properties and electro-aggregation of silver carbonate sol on polycrystalline platinum electrode and its electrocatalytic activity towards glyphosate oxidation. Electrochem Commun, 2007, 9(10): 2585. doi: 10.1016/j.elecom.2007.08.008
    [24] Ong W J, Putri L K, Tan L L, et al. Heterostructured AgX/g‒C3N4(X=Cl and Br)nanocomposites via a sonication-assisted deposition-precipitation approach: Emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide. Appl Catal B, 2016, 180: 530. doi: 10.1016/j.apcatb.2015.06.053
    [25] Ye R Q, Fang H B, Zheng Y Z, et al. Fabrication of CoTiO3/g‒C3N4 hybrid photocatalysts with enhanced H2 evolution: Z-Scheme photocatalytic mechanism Insight. ACS Appl Mater Interfaces, 2016, 8(22): 13879. doi: 10.1021/acsami.6b01850
    [26] Tian J, Liu R Y, Liu Z, et al. Boosting the photocatalytic performance of Ag2CO3 crystals in phenol degradation via coupling with trace N-CQDs. Chin J Catal, 2017, 38(12): 1999 https://www.cnki.com.cn/Article/CJFDTOTAL-CHUA201712008.htm

    田坚, 刘仁月, 刘珍, 等. 复合微量NCQDs对提高Ag2CO3半导体降解苯酚的光催化性能研究. 催化学报, 2017, 38(12): 1999 https://www.cnki.com.cn/Article/CJFDTOTAL-CHUA201712008.htm
    [27] Chen F, Wu Y D, Ning J Q, et al. Facile preparation of ternary Ag2CO3/Ag/PANI composite nanorods with enhanced photoactivity and stability. J Mater Sci, 2017, 52(8): 4521. doi: 10.1007/s10853-016-0697-7
    [28] Wen X G, Zhang C, Niu C G, et al. Facile synthesis of a visible lightα-Fe2O3/BiOBr composite with high photocatalytic performance. RSC Adv, 2016, 6(5): 4035. doi: 10.1039/C5RA21359B
    [29] Ye L Q, Liu J Y, Gong C Q, et al. Two different roles of metallic Ag on Ag/AgX/BiOX(X=Cl, Br)visible light photocatalysts: surface plasmon resonance and Z-Scheme bridge. ACS Catal, 2012, 2(8): 1677. doi: 10.1021/cs300213m
    [30] Tian N, Huang H W, He Y, et al. Mediator-free direct Z-scheme photocatalytic system: BiVO4/g‒C3N4organic‒inorganic hybrid photocatalyst with highly efficient visible-light-induced photocatalytic activity. Dalton Trans, 2015, 44(9): 4297. doi: 10.1039/C4DT03905J
    [31] Shi W L, Guo F L, Yuan S. In situ synthesis of Z-scheme Ag3PO4/CuBi2O4 photocatalysts and enhanced photocatalytic performance for the degradation of tetracycline under visible light irradiation. Appl Catal B, 2017, 209: 720. doi: 10.1016/j.apcatb.2017.03.048
    [32] Ge M, Li Z L. All-solid-state Z-Scheme photocatalytic systems based on silver-containing semiconductor materials. Prog Chem, 2017, 29(8): 846 https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201708004.htm

    葛明, 李振路. 基于银系半导体材料的全固态Z型光催化体系. 化学进展, 2017, 29(8): 846 https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201708004.htm
  • 加载中
图(3)
计量
  • 文章访问数:  315
  • HTML全文浏览量:  28
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-29
  • 刊出日期:  2018-12-20

目录

    /

    返回文章
    返回