陶瓷颗粒增强粉末冶金Fe-2Cu-0.6C复合材料的微观结构和力学性能

何勤求 李普明 袁勇 张德金 刘增林 李松林

何勤求, 李普明, 袁勇, 张德金, 刘增林, 李松林. 陶瓷颗粒增强粉末冶金Fe-2Cu-0.6C复合材料的微观结构和力学性能[J]. 粉末冶金技术, 2019, 37(1): 11-17, 22. doi: 10.19591/j.cnki.cn11-1974/tf.2019.01.002
引用本文: 何勤求, 李普明, 袁勇, 张德金, 刘增林, 李松林. 陶瓷颗粒增强粉末冶金Fe-2Cu-0.6C复合材料的微观结构和力学性能[J]. 粉末冶金技术, 2019, 37(1): 11-17, 22. doi: 10.19591/j.cnki.cn11-1974/tf.2019.01.002
HE Qin-qiu, LI Pu-ming, YUAN Yong, ZHANG De-jin, LIU Zeng-lin, LI Song-lin. Microstructure and mechanical properties of ceramic particle-reinforced powder metallurgy Fe-2Cu-0.6C composites[J]. Powder Metallurgy Technology, 2019, 37(1): 11-17, 22. doi: 10.19591/j.cnki.cn11-1974/tf.2019.01.002
Citation: HE Qin-qiu, LI Pu-ming, YUAN Yong, ZHANG De-jin, LIU Zeng-lin, LI Song-lin. Microstructure and mechanical properties of ceramic particle-reinforced powder metallurgy Fe-2Cu-0.6C composites[J]. Powder Metallurgy Technology, 2019, 37(1): 11-17, 22. doi: 10.19591/j.cnki.cn11-1974/tf.2019.01.002

陶瓷颗粒增强粉末冶金Fe-2Cu-0.6C复合材料的微观结构和力学性能

doi: 10.19591/j.cnki.cn11-1974/tf.2019.01.002
基金项目: 

国家高技术研究发展计划(863计划)资助项目 2013AA031102

详细信息
    通讯作者:

    李松林, E-mail: lisl@csu.edu.cn

  • 中图分类号: TF125

Microstructure and mechanical properties of ceramic particle-reinforced powder metallurgy Fe-2Cu-0.6C composites

More Information
  • 摘要: 采用传统粉末冶金压制/烧结技术,经600 MPa压制、1140℃烧结制备了陶瓷颗粒增强(SiC、TiC及TiB2陶瓷颗粒,质量分数0~1.6%)Fe-2Cu-0.6C低合金钢复合材料,对三种复合材料的微观结构和力学性能进行了研究。结果表明:在烧结过程中,SiC与TiB2颗粒与基体发生反应,故而与基体界面结合良好;当添加质量分数为1.6%的SiC颗粒时,复合材料烧结后的布氏硬度与抗拉强度分别比基体提高了35.9%、69.4%;添加质量分数为1.2%的TiB2颗粒时,复合材料相对密度比基体提高了5.3%,其烧结硬度、抗拉强度与基体相比分别提高了77.9%、72.6%;由于烧结过程中TiC颗粒不与基体发生反应,故而添加TiC颗粒对复合材料的布氏硬度、抗拉强度影响不大。
  • 图  1  基体和复合材料的金相组织:(a)基体;(b)1.2% SiC;(c)1.2% TiC;(d)1.2% TiB2

    Figure  1.  Metallographic structures of the matrix and composites: (a) matrix; (b) 1.2% SiC; (c) 1.2% TiC; (d) 1.2% TiB2

    图  2  添加陶瓷颗粒的复合材料界面能谱分析:(a)SiC;(b)TiC;(c)TiB2

    Figure  2.  Interface EDS analysis of ceramic particle-reinforced composites: (a) SiC; (b) TiC; (c) TiB2

    图  3  陶瓷颗粒质量分数对复合材料生坯和烧结坯相对密度的影响:(a)SiC;(b)TiC;(c)TiB2

    Figure  3.  Effects of ceramic particle contents by mass on the relative density of green and sintered composite parts: (a) SiC; (b) TiC; (c) TiB2

    图  4  陶瓷颗粒质量分数对复合材料硬度的影响:(a)SiC;(b)TiC;(c)TiB2

    Figure  4.  Effects of ceramic particle contents by mass on composite hardness: (a) SiC; (b) TiC; (c) TiB2

    图  5  陶瓷颗粒质量分数对复合材料抗拉强度的影响:(a)SiC;(b)TiC;(c)TiB2

    Figure  5.  Effects of ceramic particle contents by mass on the tensile strength of composite: (a) SiC; (b) TiC; (c) TiB2

    图  6  基体和复合材料断口形貌:(a)基体;(b)1.6% SiC;(c)1.6% TiC;(d)1.6% TiB2

    Figure  6.  Fracture surfaces of the matrix and composites: (a) matrix; (b) 1.6% SiC; (c) 1.6% TiC; (d) 1.6% TiB2

    表  1  FHY100.27还原铁粉化学成分(质量分数)

    Table  1.   Chemical composition of FHY100.27 reduced iron powder %

    C Si Mn P S 氢损(HL) 全铁含量(TFe)
    0.010 0.100 0.330 0.012 0.011 0.180 98.570
    下载: 导出CSV

    表  2  陶瓷颗粒增强复合材料体系组成(质量分数)

    Table  2.   Composition of ceramic particle-reinforced composite system %

    铜粉 石墨 陶瓷颗粒(SiC、TiC、TiB2 铁粉
    2.0 0.6 0.4、0.8、1.2、1.6 余量
    下载: 导出CSV
  • [1] Efe G C, Ipek M, Zeytin S, et al. An investigation of the effect of SiC particle size on Cu-SiC composites. Composites Part B, 2012, 43(4): 1813 doi: 10.1016/j.compositesb.2012.01.006
    [2] Morris D G, Muñoz-Morris M A. Nanoprecipitation of oxide particles and related high strength in oxide-dispersion-strengthened iron-aluminium-chromium intermetallics. Acta Mater, 2013, 61(12): 4636 doi: 10.1016/j.actamat.2013.04.034
    [3] Cha L M, Lartigue-Korinek S, Walls M, et al. Interface structure and chemistry in a novel steel-based composite Fe-TiB2 obtained by eutectic solidification. Acta Mater, 2012, 60(18): 6382 doi: 10.1016/j.actamat.2012.08.017
    [4] Wang H Y, Jiang Q C, Ma B X, et al. Reactive infiltration synthesis of TiB2-TiC particulates reinforced steel matrix composites. J Alloys Compd, 2005, 391(1-2): 55 doi: 10.1016/j.jallcom.2004.08.045
    [5] Bastwros M, Kim G Y. Ultrasonic spray deposition of SiC nanoparticles for laminate metal composite fabrication. Powder Technol, 2016, 288: 279 doi: 10.1016/j.powtec.2015.10.039
    [6] Yi D Q, Yu P C, Hu B, et al. Preparation of nickel-coated titanium carbide particulates and their use in the production of reinforced iron matrix composites. Mater Des, 2013, 52: 572 doi: 10.1016/j.matdes.2013.05.097
    [7] Sulima I, Boczkal S, Jaworska L. SEM and TEM characterization of microstructure of stainless steel composites reinforced with TiB2. Mater Charact, 2016, 118: 560 doi: 10.1016/j.matchar.2016.07.005
    [8] Huang X Q, Zuo A W, Wang Z, et al. Performance of iron-based composites reinforced by different SiC contents. Mater Sci Eng Powder Metall, 2014, 19(2): 271 doi: 10.3969/j.issn.1673-0224.2014.02.018

    黄小琴, 左爱文, 王哲, 等. SiC含量对铁基复合材料性能的影响. 粉末冶金材料科学与工程, 2014, 19(2): 271 doi: 10.3969/j.issn.1673-0224.2014.02.018
    [9] Song B, Dong S J, Coddet P, et al. Microstructure and tensile behavior of hybrid nano-micro SiC reinforced iron matrix composites produced by selective laser melting. J Alloys Compd, 2013, 579(10): 415 http://www.sciencedirect.com/science/article/pii/S0925838813014850
    [10] Pelleg J. Reactions in the matrix and interface of the Fe-SiC metal matrix composite system. Mater Sci Eng A, 1999, 269(1-2): 225 doi: 10.1016/S0921-5093(99)00158-6
    [11] Lartigue-Korinek S, Walls M, Haneche N, et al. Interfaces and defects in a successfully hot-rolled steel-based composite Fe-TiB2. Acta Mater, 2015, 98: 297 doi: 10.1016/j.actamat.2015.07.024
    [12] Efe G C, Zeytin S, Bindal C. The effect of SiC particle size on the properties of Cu-SiC composites. Mater Des, 2012, 36: 633 doi: 10.1016/j.matdes.2011.11.019
    [13] Zhang Y F, Ji Z, Liu G M, et al. Manufacturing process and properties of Al2O3 dispersion strengthened copper-based composite with high electrical conductivity. Powder Metall Technol, 2016, 34(5): 346 doi: 10.3969/j.issn.1001-3784.2016.05.005

    张一帆, 纪箴, 刘贵民, 等. Al2O3弥散增强Cu基高导电率复合材料的制备及性能研究. 粉末冶金技术, 2016, 34(5): 346 doi: 10.3969/j.issn.1001-3784.2016.05.005
    [14] Li J R. Ceramic-Metal Composite Material. Beijing: Metallurgical Industry Press, 2004

    李荣久. 陶瓷-金属复合材料. 北京: 冶金工业出版社, 2004
    [15] Liu J W, Lv J, Wang J M, et al. Study on tribological properties of sintered ferrous alloys reinforced by SiC particles. Trans Mater Heat Treat, 2006, 27(1): 16 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL200601005.htm

    刘君武, 吕珺, 王建民, 等. 微量SiC颗粒增强铁基合金的摩擦磨损性能研究. 材料热处理学报, 2006, 27(1): 16 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL200601005.htm
    [16] Beygi H, Sajjadi S A, Zebarjad S M. Microstructural analysis and mechanical characterization of aluminum matrix nanocomposites reinforced with uncoated and Cu-coated alumina particles. Mater Sci Eng A, 2014, 607: 81 doi: 10.1016/j.msea.2014.03.050
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  354
  • HTML全文浏览量:  110
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-24
  • 刊出日期:  2019-02-27

目录

    /

    返回文章
    返回