温度分布对铜基摩擦材料点蚀损伤的影响

韩明 杜建华 宁克焱 李辉 王志勇 邱倩

韩明, 杜建华, 宁克焱, 李辉, 王志勇, 邱倩. 温度分布对铜基摩擦材料点蚀损伤的影响[J]. 粉末冶金技术, 2019, 37(1): 18-22. doi: 10.19591/j.cnki.cn11-1974/tf.2019.01.003
引用本文: 韩明, 杜建华, 宁克焱, 李辉, 王志勇, 邱倩. 温度分布对铜基摩擦材料点蚀损伤的影响[J]. 粉末冶金技术, 2019, 37(1): 18-22. doi: 10.19591/j.cnki.cn11-1974/tf.2019.01.003
HAN Ming, DU Jian-hua, NING Ke-yan, LI Hui, WANG Zhi-yong, QIU Qian. Effect of temperature distribution on pitting damage of copper-based friction material[J]. Powder Metallurgy Technology, 2019, 37(1): 18-22. doi: 10.19591/j.cnki.cn11-1974/tf.2019.01.003
Citation: HAN Ming, DU Jian-hua, NING Ke-yan, LI Hui, WANG Zhi-yong, QIU Qian. Effect of temperature distribution on pitting damage of copper-based friction material[J]. Powder Metallurgy Technology, 2019, 37(1): 18-22. doi: 10.19591/j.cnki.cn11-1974/tf.2019.01.003

温度分布对铜基摩擦材料点蚀损伤的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2019.01.003
基金项目: 

国家自然科学基金资助项目 51001117

详细信息
    通讯作者:

    杜建华, E-mail: djh619@163.com

  • 中图分类号: TF125

Effect of temperature distribution on pitting damage of copper-based friction material

More Information
  • 摘要: 通过离合器惯性实验台耐热实验,结合对非均质粉末冶金摩擦层结构模型和温度场的分析结果,研究了特定工况下的铜基粉末冶金摩擦副点蚀损伤现象,分析了温度分布对摩擦材料点蚀损伤的影响。结果表明:湿式铜基摩擦材料在长时间过载或热负荷集中时,由于摩擦表面产生局部高温,摩擦层内部产生较大的温度梯度和热应力,在铜基体与石墨接触区域会产生裂纹并出现铜基体的脱落与转移,发生点蚀;摩擦层上的点蚀程度由外侧向内侧逐渐加重后再减轻,中部点蚀现象最严重;在同一道摩擦层上,距离径向油槽较远区域的点蚀现象严重。
  • 图  1  1铜基粉末冶金摩擦片宏观形貌

    Figure  1.  Macro-morphology of Cu-based friction disk by powder metallurgy

    图  2  离合器惯性试验台示意图

    Figure  2.  Test-bed of clutch

    图  3  2点蚀损伤宏观形貌:(a)摩擦片;(b)对偶片

    Figure  3.  Macro-morphology of pitting damage: (a) friction disk; (b) dual disc

    图  4  摩擦层表面形貌:(a)1道;(b)2道;(c)3道;(d)4道;(e)5道;(f)6道;(g)7道;(h)8道

    Figure  4.  Surface morphology of friction layer: (a) course 1; (b) course 2; (c) course 3; (d) course 4; (e) course 5; (f) course 6; (g) course 7; (h) course 8

    图  5  摩擦层表面形貌:(a)3道;(b)5道

    Figure  5.  Surface morphology of friction disk: (a) course 3; (b) course 5

    图  6  非均质摩擦层温度场:(a)0.05 s;(b)0.10 s

    Figure  6.  Temperature field of inhomogeneous friction layer: (a) 0.05 s; (b) 0.10 s

    图  7  第5道点蚀区域微观形貌

    Figure  7.  Micro-morphology of pitting area in course 5

    表  1  铜基摩擦材料化学成分(质量分数)

    Table  1.   Chemical composition of Cu-based friction materials %

    Cu SiO2 Sn 石墨
    78 3 4 15
    下载: 导出CSV
  • [1] Han B L, Lu X C. Effect of nano-sized CeF3 on microstructure, mechanical, high temperature friction corrosion behavior of Ni–W composite coatings. Surf Coat Technol, 2009, 203(23): 3656 doi: 10.1016/j.surfcoat.2009.05.046
    [2] Majcherczak D, Dufrenoy P, Nait-abdelaziz, M. Third body influence on thermal friction contact problems: application to braking. J Tribol, 2005, 127(1): 89 doi: 10.1115/1.1757490
    [3] Holinski R, Hesse D. Changes at interfaces of friction components during braking. J Automob Eng, 2003, 217(9): 765 doi: 10.1177/095440700321700901
    [4] Fu R, Song B Y, Gao F, et al. Effects of SiO2 on the formation of third bodies in friction. Chin J Mater Res, 2008, 22(1): 31 doi: 10.3321/j.issn:1005-3093.2008.01.005

    符蓉, 宋宝韫, 高飞, 等. SiO2对摩擦第三体形成的作用. 材料研究学报, 2008, 22(1): 31 doi: 10.3321/j.issn:1005-3093.2008.01.005
    [5] Majcherczaka D, Dufrenor P, Berthier Y, et al. Experimental thermal study of contact with third body. Wear, 2006, 261(5-6): 467 doi: 10.1016/j.wear.2005.12.006
    [6] Xu H F. Adhesion wear mechanism and analysis. Mech Manage Dev, 2007(4): 94 https://www.cnki.com.cn/Article/CJFDTOTAL-JSGL2007S1048.htm

    续海峰. 粘着磨损机理及其分析. 机械管理开发, 2007(4): 94 https://www.cnki.com.cn/Article/CJFDTOTAL-JSGL2007S1048.htm
    [7] Fu R, Gao F, Mu C, et al. Tribology performance of copper matrix composites under dry and wet conditions. Acta Mater Compos Sin, 2010, 27(1): 79-84 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201001015.htm

    符蓉, 高飞, 牟超, 等. 铜基复合材料干湿条件下的摩擦学行为. 复合材料学报, 2010, 27(1): 79 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201001015.htm
    [8] Chu K, Jia C C, Liang X B, el a1. The thermal conductivity of pressure infiltrated SiCp/Al composites with various size distributions: experimental study and modeling. Mater Des, 2009, 30(9): 3497 doi: 10.1016/j.matdes.2009.03.009
    [9] Li Y Y, Du J H, Jia C C. Investigation on tribological properties of micro/nano-SiO2 particles reinforced copper matrix composites. Powder Metall Technol, 2012, 30(5): 353 doi: 10.3969/j.issn.1001-3784.2012.05.006

    李园园, 杜建华, 贾成厂. 微/纳米SiO2增强铜基复合材料摩擦学性能的研究. 粉末冶金技术, 2012, 30(5): 353 doi: 10.3969/j.issn.1001-3784.2012.05.006
    [10] Yao P P, Zhang Z Y, Wang L, et al. Effect of sintering temperature on frictional wear behavior of iron-based powder metallurgy aircraft brake materials. Lubr Eng, 2007, 32(6): 1 doi: 10.3969/j.issn.0254-0150.2007.06.001

    姚萍屏, 张忠义, 汪琳, 等. 烧结温度对铁基粉末冶金航空刹车材料摩擦磨损性能的影响. 润滑与密封, 2007, 32(6): 1 doi: 10.3969/j.issn.0254-0150.2007.06.001
    [11] Wang R. Friction and Wear Properties of Powder Metallurgy Cam Materials [Dissertation]. Beijing: General Research Institute for Nonferrous Metals, 2017

    王蕊. 粉末冶金凸轮材料摩擦磨损性能研究[学位论文]. 北京: 北京有色金属研究总院, 2017
    [12] Liu L J, Li L, Wu Q J, et al. Effects of high speed linear straight-line braking on Cu-based powder metallurgy friction materials. Powder Metall Technol, 2017, 35(6): 422 doi: 10.19591/j.cnki.cn11-1974/tf.2017.06.004

    刘联军, 李利, 吴其俊, 等. 高速直线制动对铜基粉末冶金摩擦材料的影响. 粉末冶金技术, 2017, 35(6): 422 doi: 10.19591/j.cnki.cn11-1974/tf.2017.06.004
    [13] Liu L J, Li L, Wu Q J, et al. Effects of braking velocity on friction properties of Cu-based powder metallurgy friction material. Powder Metall Technol, 2018, 36(2): 83 doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.001

    刘联军, 李利, 吴其俊, 等. 刹车速度对铜基粉末冶金摩擦材料性能的影响. 粉末冶金技术, 2018, 36(2): 83 doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.001
    [14] Wang D F, Zhang B P, Jia C C, et al. Abrasive wear behavior of bimodal WC–CoCr coatings sprayed by high velocity oxy-fuel. Powder Metall Technol, 2017, 35(2): 118 doi: 10.3969/j.issn.1001-3784.2017.02.008

    王大锋, 张波萍, 贾成厂, 等. 超音速火焰喷涂技术制备的双峰WC–CoCr涂层磨粒磨损特性. 粉末冶金技术, 2017, 35(2): 118 doi: 10.3969/j.issn.1001-3784.2017.02.008
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  28
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-15
  • 刊出日期:  2019-02-27

目录

    /

    返回文章
    返回