WC颗粒增强对Fe-1.5Cu-1.8Ni-0.5Mo-1C粉末冶金复合材料的影响

叶旋 涂华锦 邱志文 秦岭 高学敏

叶旋, 涂华锦, 邱志文, 秦岭, 高学敏. WC颗粒增强对Fe-1.5Cu-1.8Ni-0.5Mo-1C粉末冶金复合材料的影响[J]. 粉末冶金技术, 2019, 37(1): 40-45. doi: 10.19591/j.cnki.cn11-1974/tf.2019.01.007
引用本文: 叶旋, 涂华锦, 邱志文, 秦岭, 高学敏. WC颗粒增强对Fe-1.5Cu-1.8Ni-0.5Mo-1C粉末冶金复合材料的影响[J]. 粉末冶金技术, 2019, 37(1): 40-45. doi: 10.19591/j.cnki.cn11-1974/tf.2019.01.007
YE Xuan, TU Hua-jin, QIU Zhi-wen, QIN Ling, GAO Xue-min. Effect of WC particle reinforcement on Fe-1.5Cu-1.8Ni-0.5Mo-1C P/M composite[J]. Powder Metallurgy Technology, 2019, 37(1): 40-45. doi: 10.19591/j.cnki.cn11-1974/tf.2019.01.007
Citation: YE Xuan, TU Hua-jin, QIU Zhi-wen, QIN Ling, GAO Xue-min. Effect of WC particle reinforcement on Fe-1.5Cu-1.8Ni-0.5Mo-1C P/M composite[J]. Powder Metallurgy Technology, 2019, 37(1): 40-45. doi: 10.19591/j.cnki.cn11-1974/tf.2019.01.007

WC颗粒增强对Fe-1.5Cu-1.8Ni-0.5Mo-1C粉末冶金复合材料的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2019.01.007
基金项目: 

广东省高等职业教育特色专业建设计划第一批立项资助项目 0035306

2017年度广东省教育厅青年创新人才类资助项目(自然科学) 2017GkQNCX075

2017年度广东省教育厅青年创新人才类资助项目(自然科学) 2017GkQNCX076

河源职业技术学院校级科研课题"Fe基粘结相的金属陶瓷的研究与开发"资助项目 2017KJ04

2017年河源市源城区科技计划"新型高耐磨颗粒增强Fe基齿轮材料研究与产业化"资助项目 源科[2017]16号

详细信息
    通讯作者:

    叶旋, E-mail: yexuan1216@sina.com

  • 中图分类号: TB333

Effect of WC particle reinforcement on Fe-1.5Cu-1.8Ni-0.5Mo-1C P/M composite

More Information
  • 摘要: 制备了含有不同质量分数WC增强颗粒(0%、1%、2%、3%、4%、5%、6%、7%、8%、9%及10%)的Fe-1.5Cu-1.8Ni-0.5Mo-1C粉末冶金复合材料,分析了WC质量分数对复合材料显微组织、硬度与耐磨性能的影响。结果表明,在Fe-1.5Cu-1.8Ni-0.5Mo-1C材料中添加适量的WC颗粒可以提升复合材料的性能,尤其是耐磨性能。当WC颗粒的质量分数在1%~2%时,材料具有较好的组织结构与力学性能,相对于不添加WC增强颗粒的材料,含质量分数1%与2% WC增强颗粒的材料硬度(HRB)分别提升了12.9%和14.3%,磨损量分别降低了50%和52.1%。
  • 图  1  含不同质量分数WC增强颗粒的Fe-1.5Cu-1.8Ni-0.5Mo-1C复合材料孔隙形貌:(a)0%;(b)1%;(c)2%;(d)3%;(e)4%;(f)5%;(g)6%;(h)7%;(i)8%;(j)9%;(k)10%

    Figure  1.  Pore morphology of specimens added by WC reinforced particles in different mass fraction: (a) 0%; (b) 1%; (c) 2%; (d) 3%; (e) 4%; (f) 5%;(g) 6%; (h) 7%; (i) 8%; (j) 9%; (k) 10%

    图  2  含不同质量分数WC增强颗粒的Fe-1.5Cu-1.8Ni-0.5Mo-1C复合材料密度

    Figure  2.  Density of specimens added by WC reinforced particles in different mass fraction

    图  3  含不同质量分数WC增强颗粒的Fe-1.5Cu-1.8Ni-0.5Mo-1C复合材料硬度

    Figure  3.  Hardness of specimens added by WC reinforced particles in different mass fraction

    图  4  含不同质量分数WC增强颗粒的Fe-1.5Cu-1.8Ni-0.5Mo-1C复合材料磨损量

    Figure  4.  Abrasion loss of specimens added by WC reinforced particles in different mass fraction

    表  1  试样成分配比(质量分数)

    Table  1.   Composition of specimens by mass %

    样品编号 Fe-1.5Cu-1.8Ni-0.5Mo-1C 润滑剂 WC
    1# 99.5 0.5 0
    2# 98.5 0.5 1
    3# 97.5 0.5 2
    4# 96.5 0.5 3
    5# 95.5 0.5 4
    6# 94.5 0.5 5
    7# 93.5 0.5 6
    8# 92.5 0.5 7
    9# 91.5 0.5 8
    10# 90.5 0.5 9
    11# 89.5 0.5 10
    下载: 导出CSV

    表  2  试样烧结工艺

    Table  2.   Sintering process of specimens

    烧结段 温度/℃ 时间/min
    1 865 18
    2 975 18
    3 1110 18
    4 1120 18
    5 1115 18
    7 冷却段 90
    下载: 导出CSV
  • [1] Wang K, Zhang L H, Li Z H, et al. Mechanism of ultrasonic field on the particle micro-agglomeration and interfacial bonding of SiCp/7085 composites. Chin J Eng, 2017, 39(2): 238 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201702011.htm

    王坤, 张立华, 黎正华, 等. 超声外场对SiCp/7085复合材料颗粒微观团聚与界面结合的作用机理. 工程科学学报, 2017, 39(2): 238 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201702011.htm
    [2] Fan T, Liu B W, Sun Y R, et al. Study on wear resistance of Al2O3 particle reinforced Al matrix composites. Powder Metall Technol, 2015, 33(3): 186 doi: 10.3969/j.issn.1001-3784.2015.03.006

    范涛, 刘博文, 孙艳荣, 等. Al2O3颗粒增强铝基复合材料的耐磨性研究. 粉末冶金技术, 2015, 33(3): 186 doi: 10.3969/j.issn.1001-3784.2015.03.006
    [3] Wu C, Sun A Z, Liu Y S, et al. Preparation and properties of nano-SiC particle reinforced Al-Mg composite. Powder Metall Technol, 2017, 35(3): 182 doi: 10.19591/j.cnki.cn11-1974/tf.2017.03.004

    吴超, 孙爱芝, 刘永生, 等. 纳米SiC颗粒增强铝镁复合材料的制备与性能研究. 粉末冶金技术, 2017, 35(3): 182 doi: 10.19591/j.cnki.cn11-1974/tf.2017.03.004
    [4] Li Y Y, Ni K Y, Zhu F W. Study of TiC particle-reinforced Cu matrix composites. Powder Metall Technol, 2018, 36(2): 106 doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.005

    李月英, 倪慨宇, 祝夫文. TiC颗粒增强铜基复合材料的研究. 粉末冶金技术, 2018, 36(2): 106 doi: 10.19591/j.cnki.cn11-1974/tf.2018.02.005
    [5] Liu X, Ding K W, Liu Y L. Sliding friction and wear properties of WC particles reinforced high chrome steel matrix surface composite. Hot Work Technol, 2015, 44(14): 174 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201514050.htm

    刘旋, 丁克伟, 刘运林. WC颗粒增强高铬钢基表面复合材料的滑动摩擦磨损性能研究. 热加工工艺, 2015, 44(14): 174 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201514050.htm
    [6] Yuan Q B, Hu C, Chen X Z. Effect of heat source on Fe-based coating reinforced by in-situ synthesized WC particles. Hot Work Technol, 2016, 45(4): 162 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201604051.htm

    袁其兵, 胡超, 陈希章. 热源对原位合成WC颗粒增强铁基涂层的影响. 热加工工艺, 2016, 45(4): 162 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201604051.htm
    [7] Li X Q, Chen H J, Li Z Y, et al. Study on manufacturing and wear resistance of WC reinforced Fe-2Cu-2Ni-1Mo-1C powder metallurgy steel. J Mech Eng, 2013, 49(18): 57 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201318009.htm

    李小强, 陈火金, 李子阳, 等. WC增强Fe-2Cu-2Ni-1Mo-1C粉末冶金钢的制备及其耐磨性能研究. 机械工程学报, 2013, 49(18): 57 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201318009.htm
    [8] Li X Q, Lai Y G, Chen J. Microstructure and mechanical properties of WCp reinforced iron-based alloy by mechanical alloying and spark plasma sintering. Mater Sci Eng Powder Metall, 2012, 17(5): 599 doi: 10.3969/j.issn.1673-0224.2012.05.009

    李小强, 赖燕根, 陈健. 机械合金化与放电等离子烧结制备WC颗粒增强Fe基合金的组织与力学性能. 粉末冶金材料科学与工程, 2012, 17(5): 599 doi: 10.3969/j.issn.1673-0224.2012.05.009
    [9] Li X Q, Li Z Y, Ao J P, et al. Preparation of nano-WC particles reinforced high chromium iron-based powder metallurgy materials. Mater Sci Eng Powder Metall, 2014, 19(4): 615 doi: 10.3969/j.issn.1673-0224.2014.04.018

    李小强, 李子阳, 敖敬培, 等. 纳米WC颗粒增强高铬铁基粉末冶金材料的制备. 粉末冶金材料科学与工程, 2014, 19(4): 615 doi: 10.3969/j.issn.1673-0224.2014.04.018
    [10] Cheng X L, Gao Y M, Xing J D, et al. Preparation of warm compacted and sintered WC/45 steel composite and its wear-resistance. J Xi′An Jiaotong Univ, 2005, 39(1): 53 doi: 10.3321/j.issn:0253-987X.2005.01.013

    成小乐, 高义民, 邢建东, 等. WC/45钢复合材料的温压烧结工艺及其磨损性能. 西安交通大学学报, 2005, 39(1): 53 doi: 10.3321/j.issn:0253-987X.2005.01.013
    [11] Arsenault R J, Wang L, Feng C R. Strengthening of composites due to microstructural changes in the matrix. Acta Metall et Mater, 1991, 39(1): 47 doi: 10.1016/0956-7151(91)90327-W
    [12] Evans A G, Hutchinson J W, Mcmeeking R M. Stress-strain behavior of metal matrix composites with discontinuous reinforcements. Scr Metall Mater, 1991, 25(1): 3 doi: 10.1016/0956-716X(91)90344-Z
    [13] Arsenault R J, Shi N. Dislocation generation due to differences between the coefficients of thermal expansion. Mater Sci Eng, 1986, 81(1-2): 175 http://www.sciencedirect.com/science/article/pii/0025541686902612
    [14] Wu Y, Lavernia E J. Strengthening behavior of particulate reinforced MMCs. Scr Metall Mater, 1992, 27(2): 173 doi: 10.1016/0956-716X(92)90108-Q
    [15] Starink M J, Wang P, Sinclair I. Microstructure and strengthening of Al-Li-Cu-Mg alloys and MMCs: Ⅱ. Modelling of yield strength. Acta Mater, 1999, 47(14): 3855 doi: 10.1016/S1359-6454(99)00228-1
    [16] Zhao M H, Liu A G, Guo M H. Research on WC reinforced metal matrix composite. Weld Joining, 2006(11): 26 doi: 10.3969/j.issn.1001-1382.2006.11.006

    赵敏海, 刘爱国, 郭面焕. WC颗粒增强耐磨材料的研究现状. 焊接, 2006(11): 26 doi: 10.3969/j.issn.1001-1382.2006.11.006
    [17] You X H. Behaviour of hard phase of steel bonded WC hard alloy during heat treatment. Powder Metall Technol 1984(2): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ198402000.htm

    游兴河. WC系钢结硬质合金热处理中硬质相的行为. 粉末冶金技术, 1984(2): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ198402000.htm
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  229
  • HTML全文浏览量:  77
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-11
  • 刊出日期:  2019-02-27

目录

    /

    返回文章
    返回