微波烧结与传统烧结对纯钛组织与性能的影响

亢宁宁 陈文革 侯蕊 赵千

亢宁宁, 陈文革, 侯蕊, 赵千. 微波烧结与传统烧结对纯钛组织与性能的影响[J]. 粉末冶金技术, 2019, 37(1): 50-56. doi: 10.19591/j.cnki.cn11-1974/tf.2019.01.009
引用本文: 亢宁宁, 陈文革, 侯蕊, 赵千. 微波烧结与传统烧结对纯钛组织与性能的影响[J]. 粉末冶金技术, 2019, 37(1): 50-56. doi: 10.19591/j.cnki.cn11-1974/tf.2019.01.009
KANG Ning-ning, CHEN Wen-ge, HOU Rui, ZHAO Qian. Effects of microwave sintering and conventional sintering on microstructures and properties of pure titanium[J]. Powder Metallurgy Technology, 2019, 37(1): 50-56. doi: 10.19591/j.cnki.cn11-1974/tf.2019.01.009
Citation: KANG Ning-ning, CHEN Wen-ge, HOU Rui, ZHAO Qian. Effects of microwave sintering and conventional sintering on microstructures and properties of pure titanium[J]. Powder Metallurgy Technology, 2019, 37(1): 50-56. doi: 10.19591/j.cnki.cn11-1974/tf.2019.01.009

微波烧结与传统烧结对纯钛组织与性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2019.01.009
基金项目: 

西安市科技计划资助项目 2017080CG/RC043

详细信息
    通讯作者:

    陈文革, E-mail: wgchen001@263.net

  • 中图分类号: TF823;TG146.2+3

Effects of microwave sintering and conventional sintering on microstructures and properties of pure titanium

More Information
  • 摘要: 和熔炼铸造法相比,采用粉末冶金法制备钛材,可以避免引入杂质,提高原料利用率。本文探讨微波烧结与传统烧结对纯钛组织及性能的影响,结果表明,在1200℃保温2 h传统烧结得到等轴α-Ti组织,密度为4.33 g·cm-3,相对密度为96.06%,硬度为HV 260,抗压强度为1309 MPa,断面膨胀率为10.63%,呈典型的解理状脆性断裂;在1200℃保温15 min微波烧结得到等轴的α-Ti与条状β-Ti组织,密度为4.30 g·cm-3,相对密度为95.45%,硬度为HV 311,抗压强度为1175 MPa,断面膨胀率为18.89%,展现出一定的塑性,呈准解理状脆性断裂。
  • 图  1  纯钛粉扫描电子显微形貌

    Figure  1.  Scanning electron microscopy image of pure Ti powders

    图  2  不同烧结方式制备的纯钛试样X射线衍射图谱:(a)纯钛粉;(b)传统烧结;(c)微波烧结

    Figure  2.  XRD spectrum of pure titanium samples by different sintering technology: (a) pure Ti powders; (b) conventional sintering; (c) microwave sintering

    图  3  1200 ℃传统烧结与微波烧结纯钛试样金相组织:(a)传统烧结腐蚀前;(b)微波烧结腐蚀前;(c)传统烧结腐蚀后;(d)微波烧结腐蚀后

    Figure  3.  Microstructures of pure titanium samples by different sintering technology at 1200 ℃ (a) conventional sintering before corrosion; (b) microwave sintering before corrosion; (c) conventional sintering after corrosion; (d) microwave sintering after corrosion

    图  4  传统烧结与微波烧结纯钛试样硬度分布:(a)垂直于压制方向,靠近压头端由中心到周围的硬度分布;(b)沿压制方向,从压头到底面处的硬度分布

    Figure  4.  Vickers hardness distribution of pure titanium samples by conventional sintering and microwave sintering: (a) perpendicular to the pressing direction from the center to around; (b) along the pressing direction from the pressure head to bottom

    图  5  传统烧结与微波烧结纯钛试样的压缩应力-应变曲线

    Figure  5.  Compression stress-strain curves of pure titanium samples by conventional sintering and microwave sintering

    图  6  传统烧结与微波烧结纯钛试样断口形貌:(a)传统烧结(×60);(b)传统烧结(×2000);(c)传统烧结(×5000);(d)微波烧结(×40);(e)微波烧结(×2000);(f)微波烧结(×5000)

    Figure  6.  Fracture morphology of pure titanium samples by different sintering technology: (a) conventional sintering (×60); (b) conventional sintering (×2000); (c) conventional sintering (×5000); (d) microwave sintering (×40); (e) microwave sintering (×2000); (f) microwave sintering (×5000)

    表  1  纯Ti粉化学成分(质量分数)

    Table  1.   Chemical composition of pure Ti powders %

    Fe Si Mg Mn O C N H Ti 其他
    0.06 0.02 0.02 0.02 0.30 0.02 0.05 0.04 余量 0.05
    下载: 导出CSV

    表  2  不同烧结方式制备纯钛的相对密度

    Table  2.   Relative density of pure titanium samples by different sintering technology

    试样编号 相对密度/% 密度/(g·cm-3)
    生坯 75.00 3.3825
    微波烧结(1200 ℃,15 min) 95.45 4.3048
    传统烧结(1200 ℃,2 h) 96.06 4.3323
    下载: 导出CSV
  • [1] Zhao Y, Zhang D F, Jiang Y. Preparation of SP-700 alloy using powder metallurgy. Mater Sci Eng Powder Metall, 2008, 13(5): 284 doi: 10.3969/j.issn.1673-0224.2008.05.006

    赵瑶, 张端锋, 江垚. 粉末冶金钛合金SP-700的制备. 粉末冶金材料科学与工程, 2008, 13(5): 284 doi: 10.3969/j.issn.1673-0224.2008.05.006
    [2] Cai Y X, Li D R. Application of Ti-alloy prepared by powder metallurgy. Mater China, 2010, 29(5): 30 https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201005008.htm

    蔡一湘, 李达人. 粉末冶金钛合金的应用现状. 中国材料进展, 2010, 29(5): 30 https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201005008.htm
    [3] Xiao D H, Yuan T C, He Y H, et al. Synthesis and mechanical properties of powder metallurgical titanium alloy. Chin J Nonferrous Met, 2010, 20(Suppl 1): 303 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ2010S1069.htm

    肖代红, 袁铁锤, 贺跃辉, 等. 粉末冶金钛合金的制备与力学性能. 中国有色金属学报, 2010, 20(增刊1): 303 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ2010S1069.htm
    [4] He J, Xiao Z Y, Guan H J, et al. High velocity compaction behavior and sintered properties of pure Ti powder. Powder Metall Technol, 2016, 34(3): 178 doi: 10.3969/j.issn.1001-3784.2016.03.004

    何杰, 肖志瑜, 关航健, 等. 纯钛粉高速压制行为及其烧结性能研究. 粉末冶金技术, 2016, 34(3): 178 doi: 10.3969/j.issn.1001-3784.2016.03.004
    [5] Weng Q G, Li R D, Zhou L B, et al. Densification dynamics and microstructure evolution behavior of spark plasma sintering of titanium powder. Mater Sci Eng Powder Metall, 2015, 20(1): 149 doi: 10.3969/j.issn.1673-0224.2015.01.024

    翁启钢, 李瑞迪, 周立波, 等. 纯钛粉放电等离子烧结致密化的动力学与组织演变行为. 粉末冶金材料科学与工程, 2015, 20(1): 149 doi: 10.3969/j.issn.1673-0224.2015.01.024
    [6] Chen W G, Wang F Z. Powder Metallurgy Technology and Materials. Beijing: Metallurgical Industry Press, 2011.

    陈文革, 王发展. 粉末冶金工艺及材料. 北京: 冶金工业出版社, 2011
    [7] Jin X J, Chang A M, Zhang H M, et al. A comparison study of sinterability and electrical properties for microwave and conventional sintered Mn0.43Ni0.9CuFe0.67O4 ceramics. J Mater Sci Technol, 2010, 26(4): 344 doi: 10.1016/S1005-0302(10)60056-4
    [8] Takayama S, Saito Y, Sato M, et al. Sintering behavior of metal powders involving microwave-enhanced chemical reaction. Jpn J Appl Phys Part 1, 2006, 45(3A): 1816 doi: 10.1143/JJAP.45.1816
    [9] Bao R, Yi J H. Application of microwave sintering technology in cemented carbide preparation. Chin J Nonferrous Met, 2014, 24(6): 1544 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201406022.htm

    鲍瑞, 易健宏. 微波烧结技术在硬质合金制备中的应用. 中国有色金属学报, 2014, 24(6): 1544 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201406022.htm
    [10] Anklekar R M, Bauer K, Agrawal D K, et al. Improved mechanical properties and microstructural development of microwave sintered copper and nickel steel PM parts. Powder Metall, 2005, 48(1): 39 doi: 10.1179/003258905X37657
    [11] Bykov Y V, Rybakov K I, Semenov V E. High-temperature microwave processing of materials. J Phys D: Appl Phys, 2001, 34: 55 doi: 10.1088/0022-3727/34/13/201
    [12] Luo S D, Qian M, Ashraf Imam M. Microwave sintering of titanium and titanium alloys. Titanium Powder Metallurgy — Science, Technology and Applications, Eds. by Qian M and (Sam) Froes F H. Oxford: Butterworth-Heinemann, 2015
    [13] Wu D, Chen W G, Zhou X, et al. Microwave sintering of ferrous metal powders and influence of particle size. Powder Metall Technol, 2015, 33(3): 213 doi: 10.3969/j.issn.1001-3784.2015.03.011

    吴丹, 陈文革, 周弦, 等. 不同粒度大小粉末的微波烧结试验探讨. 粉末冶金技术, 2015, 33(3): 213 doi: 10.3969/j.issn.1001-3784.2015.03.011
    [14] Huang J W, Peng H. A study of microwave sintered Fe-Cu-C PM alloy. Min Metall Eng, 2005, 25(5): 77 https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC200505021.htm

    黄加伍, 彭虎. 粉末冶金Fe-Cu-C合金的微波烧结研究. 矿冶工程, 2005, 25(5): 77 https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC200505021.htm
    [15] Zhu F X, Yi J H, Peng Y D. Sintering response of copper powder metal compact in microwave field. J Central South Univ Sci Technol, 2009, 40(1): 106 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200901020.htm

    朱凤霞, 易健宏, 彭元东. 微波烧结金属纯铜压坯. 中南大学学报(自然科学版), 2009, 40(1): 106 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200901020.htm
    [16] Li K, Yang P. Interaction among deformation, recrystallization and phase transformation of TA2 Pure titanium during hot compression. Trans Nonferrous Met Soc China, 2016, 26(7): 1863 doi: 10.1016/S1003-6326(16)64302-9
    [17] Liu Y B. Microstructure Evolution of TA2 Commercial Pure Titanium at High Temperature [Dissertation]. Shanghai: Shanghai Jiao Tong University, 2010

    刘以波. TA2工业纯钛高温组织演变研究[学位论文]. 上海: 上海交通大学, 2010
    [18] Xin S W, Zhao Y Q, Zeng W D. Induction and discussion of solid state phase transformation of titanium alloys (Ⅰ)——allotropic transformation. Titanium Ind Prog, 2007, 24(5): 23 https://www.cnki.com.cn/Article/CJFDTOTAL-TGYJ200705008.htm

    辛社伟, 赵永庆, 曾卫东. 钛合金固态相变的归纳与讨论(Ⅰ)——同素异构转变. 钛工业进展, 2007, 24(5): 23 https://www.cnki.com.cn/Article/CJFDTOTAL-TGYJ200705008.htm
    [19] Peng Y D. Studies on Microwave Heating Mechanism and Sintering Behavior of Powder Metallurgy Materials [Dissertation]. Changsha: Central South University, 2011

    彭元东. 微波加热机制及粉末冶金材料烧结特性研究[学位论文]. 长沙: 中南大学, 2011
    [20] Li L. Study on Damage and Fracture Behavior of TiAl Based Alloys under Compression [Dissertation]. Lanzhou: Lanzhou University of Technology, 2008

    李雷. TiAl基合金在压缩状态下的损伤断裂行为研究[学位论文]. 兰州: 兰州理工大学, 2008
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  276
  • HTML全文浏览量:  181
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-16
  • 刊出日期:  2019-02-27

目录

    /

    返回文章
    返回