新型热障涂层材料及其制备技术的研究与发展

何明涛 孟惠民 王宇超 任鹏伟

何明涛, 孟惠民, 王宇超, 任鹏伟. 新型热障涂层材料及其制备技术的研究与发展[J]. 粉末冶金技术, 2019, 37(1): 62-67. doi: 10.19591/j.cnki.cn11-1974/tf.2019.01.011
引用本文: 何明涛, 孟惠民, 王宇超, 任鹏伟. 新型热障涂层材料及其制备技术的研究与发展[J]. 粉末冶金技术, 2019, 37(1): 62-67. doi: 10.19591/j.cnki.cn11-1974/tf.2019.01.011
HE Ming-tao, MENG Hui-min, WANG Yu-chao, REN Peng-wei. Research and development of advanced thermal barrier coating materials and preparation technology[J]. Powder Metallurgy Technology, 2019, 37(1): 62-67. doi: 10.19591/j.cnki.cn11-1974/tf.2019.01.011
Citation: HE Ming-tao, MENG Hui-min, WANG Yu-chao, REN Peng-wei. Research and development of advanced thermal barrier coating materials and preparation technology[J]. Powder Metallurgy Technology, 2019, 37(1): 62-67. doi: 10.19591/j.cnki.cn11-1974/tf.2019.01.011

新型热障涂层材料及其制备技术的研究与发展

doi: 10.19591/j.cnki.cn11-1974/tf.2019.01.011
基金项目: 

国家重点基础研究发展计划(973计划)资助项目 2014CB643302

详细信息
    通讯作者:

    孟惠民, E-mail: menghm16@126.com

  • 中图分类号: TG174.4

Research and development of advanced thermal barrier coating materials and preparation technology

  • 摘要: 热障涂层(thermal barrier coatings,TBCs)能有效的提高航空发动机热端部件的工作温度和使用寿命。目前应用最为广泛的热障涂层材料为氧化钇部分稳定氧化锆(yttria-stabilized zirconia,YSZ),该热障涂层材料在服役温度高于1200℃下会发生相变,严重影响航空发动机的使用寿命和服役安全,难以满足新一代航空发动机的服役要求。本文综述了新型热障涂层材料的研究现状,重点介绍了掺杂改性氧化钇部分稳定氧化锆、烧绿石或萤石结构材料、钙钛矿结构化合物、磁铅石矿结构化合物以及新型黏结层材料的研究进展和发展方向,并论述了热障涂层制备技术的方法原理和优缺点,最后对热障涂层材料和制备方法的发展趋势进行了展望。
  • 图  1  等离子喷涂涂层截面形貌

    Figure  1.  Section morphology of coatings prepared by plasma spraying

    图  2  电子束物理气相沉积制备涂层截面形貌[30]

    Figure  2.  Section morphology of coatings prepared by EB-PVD[30]

    表  1  ScYSZ涂层热导率[9]

    Table  1.   Thermal conductivity of ScYSZ coating[9]

    温度/℃ 900 1000 1100 1200 1300 1400 1500
    热导率/(W·m-1·K-1) 0.93 0.94 0.97 1.02 1.02 1.11 1.19
    下载: 导出CSV

    表  2  稀土锆酸盐与YSZ的热物理性能[13]

    Table  2.   Physical properties of rare earth zirconate and YSZ[13]

    材料 热膨胀系数/(10-4·K-1) 热导率/(W·m-1·K-1)
    La2Zr2O7 9.10(30~1000 ℃) 1.56(800 ℃)
    Sm2Zr2O7 10.80(30~1200 ℃) 1.50(700 ℃)
    Yb2Zr2O7 10.40(1000 ℃) 1.58(800 ℃)
    Gd2Zr2O7 11.60(30~1000 ℃) 1.60(700 ℃)
    Nd2Zr2O7 10.64(100~1200 ℃) 1.60(700 ℃)
    1.25(800 ℃)
    YSZ 10.70(8YSZ,20~1000 ℃) 2.30(7YSZ,700 ℃)
    下载: 导出CSV
  • [1] Kawasaki A, Watanabe R. Cyclic thermal fracture behavior and spallation life of PSZ/NiCrAlY functionally graded thermal barrier coatings. Mater Sci Forum, 1999, 308-311: 402 doi: 10.4028/www.scientific.net/MSF.308-311.402
    [2] Zhang M, Liu G Q, Hu B F, et al. Finite element simulation and experimental verification on hot extrusion of a novel nickel-base P/M superalloy. Powder Metall Technol, 2018, 36(3): 223 doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.011

    张明, 刘国权, 胡本芙, 等. 新型镍基粉末高温合金热挤压工艺有限元模拟与实验验证. 粉末冶金技术, 2018, 36(3): 223 doi: 10.19591/j.cnki.cn11-1974/tf.2018.03.011
    [3] Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications. Science, 2002, 296(5566): 280 doi: 10.1126/science.1068609
    [4] Jiao H B, Mo S. Present status and development trend of aircraft turbine engine. Aeronaut Manuf Technol, 2015(12): 62 https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201512013.htm

    焦华宾, 莫松. 航空涡轮发动机现状及未来发展综述. 航空制造技术, 2015(12): 62 https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201512013.htm
    [5] Huang L L, Meng H M, Chen L. Research status of hexaaluminate thermal barrier coatings with magnetoplumbite structure. J Mater Eng, 2013(12): 92 https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201312018.htm

    黄亮亮, 孟惠民, 陈龙. 磁铅石结构六铝酸盐热障涂层的研究现状. 材料工程, 2013(12): 92 https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201312018.htm
    [6] Kokini K, DeJonge J, Rangaraj S, et al. Thermal shock of functionally graded thermal barrier coatings with similar thermal resistance. Surf Coat Technol, 2002, 154(2-3): 223 doi: 10.1016/S0257-8972(02)00031-2
    [7] Kvernes I, Forseth S. Corrosion mechanisms of ceramic coatings in diesel engines. Mater Sci Eng, 1987, 88: 61 doi: 10.1016/0025-5416(87)90067-X
    [8] Ji X J, Gong S K, Xu H B, et al. Influence of rare earth elements additions in YSZ ceramic coatings of thermal barrier coatings on lattice distortion. Acta Aeronaut Astronaut Sin, 2007, 28(1): 196 doi: 10.3321/j.issn:1000-6893.2007.01.038

    冀晓鹃, 宫声凯, 徐惠彬, 等. 添加稀土元素对热障涂层YSZ陶瓷层晶格畸变的影响. 航空学报, 2007, 28(1): 196 doi: 10.3321/j.issn:1000-6893.2007.01.038
    [9] Li Q L, Liu H F. Microstructure and properties of plasma sprayed Sc2O3-Y2O3-ZrO2 TBCs. Therm Spray Technol, 2016, 8(1): 17 https://www.cnki.com.cn/Article/CJFDTOTAL-RPTJ201601006.htm

    李其连, 刘怀菲. 等离子喷涂Sc2O3-Y2O3-ZrO2热障涂层组织结构和性能研究. 热喷涂技术, 2016, 8(1): 17 https://www.cnki.com.cn/Article/CJFDTOTAL-RPTJ201601006.htm
    [10] Rauf A, Yu Q, Jin L, et al. Microstructure and thermal properties of nanostructured lanthana-doped yttria-stabilized zirconia thermal barrier coatings by air plasma spraying. Scr Mater, 2012, 66(2): 109 doi: 10.1016/j.scriptamat.2011.10.017
    [11] Ahmadi-Pidani R, Shoja-Razavi R, Mozafarinia R, et al. Improving the thermal shock resistance of plasma sprayed CYSZ thermal barrier coatings by laser surface modification. Opt Lasers Eng, 2012, 50(5): 780 doi: 10.1016/j.optlaseng.2011.12.007
    [12] Qu Z X, Sparks T D, Pan W, et al. Thermal conductivity of the gadolinium calcium silicate apatites: Effect of different point defect types. Acta Mater, 2011, 59(10): 3841 doi: 10.1016/j.actamat.2011.03.008
    [13] Lv Y H, Zhang Q F. Current research status and development trend of advanced thermal barrier coatings. Powder Metall Ind, 2015, 25(1): 8 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201501003.htm

    吕艳红, 张启富. 新型热障涂层研究现状及发展趋势. 粉末冶金工业, 2015, 25(1): 8 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201501003.htm
    [14] Chi W G, Sampath S, Wang H. Microstructure-thermal conductivity relationships for plasma-sprayed yttria-stabilized zirconia coatings. J Am Ceram Soc, 2008, 91(8): 2636 doi: 10.1111/j.1551-2916.2008.02476.x
    [15] Qu Z X, Wan C L, Pan W. Thermal expansion and defect chemistry of MgO-doped Sm2Zr2O7. Chem Mater, 2007, 19(20): 4913 doi: 10.1021/cm071615z
    [16] Mu R D, Xu Z H, He S M, et al. La2(Zr0.7Ce0.3)2O7-a new oxide ceramic material for thermal barrier coatings. J Mater Eng, 2009(7): 67 doi: 10.3969/j.issn.1001-4381.2009.07.017

    牟仁德, 许振华, 贺世美, 等. La2(Zr0.7Ce0.3)2O7-新型高温热障涂层. 材料工程, 2009(7): 67 doi: 10.3969/j.issn.1001-4381.2009.07.017
    [17] Ma W, Song F Y, Dong H Y, et al. Thermophysical properties of Y2O3 and Gd2O3 co-doped SrZrO3 thermal barrier coating material. J Inorg Mater, 2012, 27(2): 209 https://www.cnki.com.cn/Article/CJFDTOTAL-WGCL201202019.htm

    马文, 宋峰雨, 董红英, 等. Y2O3与Gd2O3共掺杂SrZrO3热障涂层材料的热物理性能. 无机材料学报, 2012, 27(2): 209 https://www.cnki.com.cn/Article/CJFDTOTAL-WGCL201202019.htm
    [18] Guo L, Guo H B, Ma G H, et al. Ruddlesden-Popper structured BaLa2Ti3O10, a highly anisotropic material for thermal barrier coatings. Ceram Int, 2012, 38(5): 4345 doi: 10.1016/j.ceramint.2012.02.017
    [19] Xie X Y, Guo H B, Gong S K, et al. Lanthanum-titanium-aluminum oxide: a novel thermal barrier coating material for applications at 1300 ℃. J Eur Ceram Soc, 2011, 31(9): 1677 doi: 10.1016/j.jeurceramsoc.2011.03.036
    [20] Zhu R X, Liu Z G, Ouyang J H, et al. Preparation and characterization of LnMgAl11O19 (Ln = La, Nd, Gd) ceramic powders. Ceram Int, 2013, 39(8): 8841 doi: 10.1016/j.ceramint.2013.04.073
    [21] He M T, Meng H M, Wang Y C, et al. Synthesis mechanism and preparation of LaMgAl11O19 powder for plasma spraying. Mater Res Express, 2018, 5(6): 065021 doi: 10.1088/2053-1591/aac800
    [22] Wang Y H, Ouyang J H, Liu Z G. Preparation and thermo-physical properties of La1-xNdxMgAl11O19 (x= 0, 0.1, 0.2) ceramics. J Alloys Compd, 2009, 485(1-2): 734 doi: 10.1016/j.jallcom.2009.06.068
    [23] Zhang J F, Zhong X H, Cheng Y L, et al. Thermal-shock resistance of LnMgAl11O19 (Ln = La, Nd, Sm, Gd) with magnetoplumbite structure. J Alloys Compd, 2009, 482(1-2): 376 doi: 10.1016/j.jallcom.2009.04.025
    [24] Nicholls J R, Lawson K J, Johnstone A, et al. Methods to reduce the thermal conductivity of EB-PVD TBCs. Surf Coat Technol, 2002, 151-152: 383 doi: 10.1016/S0257-8972(01)01651-6
    [25] He J Q. First-Principles Study on Structures and Properties of NiAl with Rare Earth Element Doping [Dissertation]. Harbin: Harbin Institute of Technology, 2013

    何君琦. 稀土掺杂NiAl金属间化合物结构和性能的第一性原理研究[学位论文]. 哈尔滨: 哈尔滨工业大学, 2013
    [26] Guo H B, Zhang T, Wang S X, et al. Effect of Dy on oxide scale adhesion of NiAl coatings at 1200 ℃. Corros Sci, 2011, 53(6): 2228 doi: 10.1016/j.corsci.2011.03.003
    [27] Guo H B, Cui Y J, Peng H, et al. Improved cyclic oxidation resistance of electron beam physical vapor deposited nano-oxide dispersed β-NiAl coatings for Hf-containing superalloy. Corros Sci, 2010, 52(4): 1440 doi: 10.1016/j.corsci.2010.01.009
    [28] Rabiei A, Evans A G. Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings. Acta Mater, 2000, 48(15): 3963 doi: 10.1016/S1359-6454(00)00171-3
    [29] Dong H, Yang G J, Li C X, et al. Effect of TGO thickness on thermal cyclic lifetime and failure mode of plasma-sprayed TBCs. J Am Ceram Soc, 2014, 97(4): 1226 doi: 10.1111/jace.12868
    [30] Yu H T, Song X W, Mu R D, et al. Research of YSZ thermal barrier coatings produced by EB-PVD. Chin Rare Earth, 2011, 32(3): 40 doi: 10.3969/j.issn.1004-0277.2011.03.008

    于海涛, 宋希文, 牟仁德, 等. 电子束物理气相沉积YSZ热障涂层研究. 稀土, 2011, 32(3): 40 doi: 10.3969/j.issn.1004-0277.2011.03.008
    [31] Goto T. Thermal barrier coatings deposited by laser CVD. Surf Coat Technol, 2005, 198(1-3): 367 doi: 10.1016/j.surfcoat.2004.10.084
    [32] Wang S L. Preparation and Anti-Ablation Properties of SiC and ZrC Coatings though Chemical Vapor Deposition [Dissertation]. Xi'an: Northwestern Polytechnical University, 2015

    王少龙. 化学气相沉积SiC和ZrC涂层的制备及抗烧蚀性能[学位论文]. 西安: 西北工业大学, 2015
    [33] Morks M F, Fahim N F, Muster T, et al. In-situ synthesis of functional silica nanoparticles for enhancement the corrosion resistance of TBCs. Surf Coat Technol, 2013, 225: 106 doi: 10.1016/j.surfcoat.2013.03.022
    [34] Dou J Y, Liu G H, Pang M, et al. Research on structure characteristics of CoCrTaAlY coatings by semiconductor laser cladding. Appl Laser, 2017, 37(1): 32 https://www.cnki.com.cn/Article/CJFDTOTAL-YYJG201701007.htm

    窦俊雅, 刘光华, 庞铭, 等. 半导体激光熔覆CoCrTaAlY涂层结构特征的研究. 应用激光, 2017, 37(1): 32 https://www.cnki.com.cn/Article/CJFDTOTAL-YYJG201701007.htm
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  990
  • HTML全文浏览量:  153
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-20
  • 刊出日期:  2019-02-27

目录

    /

    返回文章
    返回