TiB2对Ta-W合金氧化行为的影响

赵成会 陈宇红 羿舟昌 李璐 王鸿业

赵成会, 陈宇红, 羿舟昌, 李璐, 王鸿业. TiB2对Ta-W合金氧化行为的影响[J]. 粉末冶金技术, 2019, 37(2): 91-97. doi: 10.19591/j.cnki.cn11-1974/tf.2019.02.002
引用本文: 赵成会, 陈宇红, 羿舟昌, 李璐, 王鸿业. TiB2对Ta-W合金氧化行为的影响[J]. 粉末冶金技术, 2019, 37(2): 91-97. doi: 10.19591/j.cnki.cn11-1974/tf.2019.02.002
ZHAO Cheng-hui, CHEN Yu-hong, YI Zhou-chang, LI Lu, WANG Hong-ye. Effect of TiB2 on the oxidation behavior of Ta-W alloy[J]. Powder Metallurgy Technology, 2019, 37(2): 91-97. doi: 10.19591/j.cnki.cn11-1974/tf.2019.02.002
Citation: ZHAO Cheng-hui, CHEN Yu-hong, YI Zhou-chang, LI Lu, WANG Hong-ye. Effect of TiB2 on the oxidation behavior of Ta-W alloy[J]. Powder Metallurgy Technology, 2019, 37(2): 91-97. doi: 10.19591/j.cnki.cn11-1974/tf.2019.02.002

TiB2对Ta-W合金氧化行为的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2019.02.002
基金项目: 

国家自然科学基金资助项目 51464001

区级大学生创新训练项目 QJCX-2017-048

详细信息
    通讯作者:

    陈宇红, E-mail: lyhchen@163.com

  • 中图分类号: TG174.4

Effect of TiB2 on the oxidation behavior of Ta-W alloy

More Information
  • 摘要: 采用热压烧结制备Ta-W合金和Ta-W-TiB2合金,研究两种合金在700、800和900℃的高温氧化行为,通过X射线衍射分析、扫描电子显微镜观察和能谱分析对合金的氧化层组分和组织形貌进行分析。结果表明:两种合金经热压烧结后的相对密度均达到97%以上,可以实现致密化。在氧化温度范围内所有合金的氧化动力学曲线都遵循直线规律,氧化温度升高氧化速率逐渐增大。Ta-W合金的氧化产物为Ta2O5固溶体,Ta-W-TiB2合金的氧化产物为Ta2O5固溶体和TiO2氧化物。在700~800℃下,稳定的TiO2提高了Ta-W-TiB2合金的抗氧化能力,但在900℃时,TiO2的破坏大大减弱了氧化层对基体的保护能力。
  • 图  1  Ta及Ta合金在700 ℃的氧化动力学曲线

    Figure  1.  Oxidation kinetics curves of Ta and Ta alloys at 700 ℃

    图  2  Ta及Ta合金在800 ℃的氧化动力学曲线

    Figure  2.  Oxidation kinetics curves of Ta and Ta alloys at 800 ℃

    图  3  Ta及Ta合金在900 ℃的氧化动力学曲线

    Figure  3.  Oxidation kinetics curves of Ta and Ta alloys at 900 ℃

    图  4  氧化速率常数与热力学温度关系曲线

    Figure  4.  Relationship between oxidation rate constant and thermodynamic temperature

    图  5  Ta及Ta合金800 ℃氧化产物X射线衍射图谱

    Figure  5.  XRD pattern of oxidation products of Ta and Ta alloys at 800 ℃

    图  6  700 ℃氧化0.5 h后Ta合金氧化层表面显微形貌:(a)Ta‒10W合金;(b)Ta‒10W‒TiB2合金

    Figure  6.  Surface morphology of oxide layer of Ta alloys oxidized at 700 ℃ for 0.5 h: (a) Ta‒10W; (b) Ta‒10W‒TiB2

    图  7  700 ℃氧化4 h后Ta合金氧化层截面显微形貌:(a)Ta‒10W合金;(b)Ta‒10W‒TiB2合金

    Figure  7.  Cross section morphology of oxide layer of Ta alloys oxidized at 700 ℃ for 4 h: (a) Ta‒10W; (b) Ta‒10W‒TiB2

    图  8  Ta‒10W‒TiB2合金氧化层截面能谱分析(面扫描)

    Figure  8.  Energy spectrum analysis (map scanning) of oxide layer cross section of Ta‒10W‒TiB2 alloy

    表  1  合金化学成分和烧结密度

    Table  1.   Chemical composition and sintering density of alloys

    合金 成分(质量分数)/% 密度
    TiB2 W Ta 烧结密度/(g·cm‒3) 相对密度/%
    Ta‒10W 0 10 90 16.69 98.64
    Ta‒20W 0 20 80 16.75 97.10
    Ta‒10W‒TiB2 1 10 89 16.47 98.61
    下载: 导出CSV

    表  2  Ta及Ta合金氧化速率常数和氧化激活能

    Table  2.   Oxidation rate constant and oxidation activation energy of Ta and Ta alloys

    温度,T/℃ 氧化速率常数,k/(mg·cm‒2·h‒1) 氧化激活能,Ea/(kJ·mol‒1)
    Ta Ta‒10W Ta‒20W Ta‒10W‒TiB2 Ta Ta‒10W Ta‒20W Ta‒10W‒TiB2
    700 8.75 4.04 4.35 1.99 105.9 116.1 122.1 134.0
    800 29.59 30.83 37.09 9.29
    900 42.02 30.83 57.05 38.15
    下载: 导出CSV
  • [1] Yin W H, Tang H P. Deep Processing Technology of Refractory Metal Materials. 1st Ed. Beijing: Chemical Industry Press, 2015

    殷为宏, 汤慧萍. 难熔金属材料深加工技术. 1版. 北京: 化学工业出版社, 2015
    [2] Committee of Modern Nonferrous Metals Analysis Series. Analysis of Modern Refractory Metals and Dilute Metals. 1st Ed. Beijing: Chemical Industry Press, 2007

    现代有色金属分析丛书编委会. 现代难熔金属和稀散金属分析. 1版. 北京: 化学工业出版社, 2007
    [3] Hu K S, Xiao X, Dong X J, et al. Research progress on strengthening and toughening of refractory tantalum based alloys for ultra-high-temperature applications. Hot Working Technol, 2014, 43(24): 19 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201424009.htm

    胡孔生, 肖璇, 董显娟, 等. 超高温应用难熔钽基合金的强韧化研究进展. 热加工工艺, 2014, 43(24): 19 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201424009.htm
    [4] Wan B, Xiao X, Zhou T N, et al. Research progress in high temperature oxidation resistance of Laves phase Ta–Cr base compounds. Corros Prot, 2015, 36(11): 1063 doi: 10.11973/fsyfh-201511011

    万斌, 肖璇, 周天宁, 等. Laves相Ta‒Cr系合金的高温抗氧化性研究进展. 腐蚀与防护, 2015, 36(11): 1063 doi: 10.11973/fsyfh-201511011
    [5] Yang D J, Shen Z S. Metal Corrosion. Beijing: Metallurgical Industry Press, 2003

    杨德钧, 沈卓身. 金属腐蚀学. 北京: 冶金工业出版社, 2003
    [6] Zhang X M, Hu Z W, Liu J Y, et al. Strengthening and grain boundary hardening for Ta‒W‒Hf alloy. Rare Met Mater Eng, 2007, 36(12): 2156 doi: 10.3321/j.issn:1002-185x.2007.12.020

    张小明, 胡忠武, 刘竞艳, 等. Ta‒W‒Hf合金的强化和晶界硬化. 稀有金属材料与工程, 2007, 36(12): 2156 doi: 10.3321/j.issn:1002-185x.2007.12.020
    [7] Cai X M, Zhang X M, Wang F, et al. Effect of the temperature state on the hidden cell structure in powder metallurgical Ta‒W‒Hf alloys. Rare Met Mater Eng, 2011, 40(Suppl 2): 396

    蔡小梅, 张小明, 王峰, 等. 热履历对Ta‒W‒Hf合金胞状结构的影响. 稀有金属材料与工程, 2011, 40(增刊2): 396
    [8] Wang X, Li Z X, Du J H, et al. Recent development progress and prospect of high temperature protection coatings for refractory metals. Equip Environ Eng, 2016, 13(3): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201603003.htm

    汪欣, 李争显, 杜继红, 等. 难熔金属表面高温防护涂层研究进展与技术展望. 装备环境工程, 2016, 13(3): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201603003.htm
    [9] Zheng X, Bai R, Wang D H, et al. Research development of refractory metal materials used in the field of aerospace. Rare Met Mater Eng, 2011, 40(10): 1871 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201110040.htm

    郑欣, 白润, 王东辉, 等. 航天航空用难熔金属材料的研究进展. 稀有金属材料与工程, 2011, 40(10): 1871 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201110040.htm
    [10] Qu N Q, Chen J L. Study on properties and application of tantalum-based alloy. World Nonferrous Met, 1999(5): 37 https://www.cnki.com.cn/Article/CJFDTOTAL-COLO905.010.htm

    屈乃琴, 陈久录. 钽基合金材料的性能与应用研究. 世界有色金属, 1999(5): 37 https://www.cnki.com.cn/Article/CJFDTOTAL-COLO905.010.htm
    [11] Wang Y, Hu X F. Study on high temperature protection coating for Ta‒base alloy. J Mater Eng, 2001(10): 3 doi: 10.3969/j.issn.1001-4381.2001.10.001

    王禹, 胡行方. Ta合金高温防护涂层研究. 材料工程, 2001(10): 3 doi: 10.3969/j.issn.1001-4381.2001.10.001
    [12] Peng H R, Zhang X, Jia C K, et al. Advancement of oxidation resistance coatings for high-temperature composites. Therm Spray Technol, 2011, 3(2): 47 doi: 10.3969/j.issn.1674-7127.2011.02.006

    彭浩然, 张鑫, 贾成科, 等. 高温复合材料表面抗氧化防护涂层研究进展. 热喷涂技术, 2011, 3(2): 47 doi: 10.3969/j.issn.1674-7127.2011.02.006
    [13] Wang L F, Zhou X J, Zhao G, et al. Study on the preparation of high temperature oxidation-resistent composite coating on Ta10W alloy. World Nonferrous Met, 2017(15): 233 https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201715136.htm

    王立斐, 周小军, 赵刚, 等. 钽钨合金高温抗氧化复合涂层制备研究. 世界有色金属, 2017(15): 233 https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201715136.htm
    [14] Wang H Y, Chen Y H, Bai Z J, et al. Preparation of Ta‒W‒Si alloy by powder metallurgy method. Powder Metall Technol, 2018, 36(1): 67 doi: 10.19591/j.cnki.cn11-1974/tf.2018.01.012

    王鸿业, 陈宇红, 白掌军, 等. 粉末冶金法制备Ta–W–Si合金. 粉末冶金技术, 2018, 36(1): 67 doi: 10.19591/j.cnki.cn11-1974/tf.2018.01.012
    [15] Liu G Z, Tian Y, Shan B Q. Oxide dispersion strengthened superalloys. Powder Metall Technol, 2001, 19(1): 20 doi: 10.3321/j.issn:1001-3784.2001.01.005

    柳光祖, 田耘, 单秉权. 氧化物弥散强化高温合金. 粉末冶金技术, 2001, 19(1): 20 doi: 10.3321/j.issn:1001-3784.2001.01.005
    [16] Li T F. High Temperature Oxidation and Thermal Corrosion of Metals. Beijing: Chemical Industry Press, 2003

    李铁藩. 金属高温氧化和热腐蚀. 北京: 化学工业出版社, 2003
    [17] Zhao G, Zhou X J, Zhang J, et al. Preparation and antioxidation mechanism of Nb–Ti–Al based alloy protective coatings. Powder Metall Technol, 2017, 35(5): 347 doi: 10.19591/j.cnki.cn11-1974/tf.2017.05.005

    赵刚, 周小军, 张静, 等. Nb-Ti-Al基合金防护涂层制备及其抗氧化机理研究. 粉末冶金技术, 2017, 35(5): 347 doi: 10.19591/j.cnki.cn11-1974/tf.2017.05.005
    [18] Li Y Y, Peng L H, Zhang C, et al. Oxidation properties of TiB2/Ti composites. Acta Mater Compos Sin, 2010, 27(2): 72 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201002014.htm

    李月英, 彭丽华, 张弛, 等. TiB2颗粒增强钛基复合材料抗氧化性能. 复合材料学报, 2010, 27(2): 72 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201002014.htm
    [19] National Materials Advisory Committee of the United States. High Temperature Antioxidant Coating. Transl by Jin S. Beijing: Science Press, 1980

    美国国家材料咨询委员会. 高温抗氧化涂层. 金石译. 北京: 科学出版社, 1980
    [20] Gong M. Metal Corrosion Theory and Corrosion Control. Beijing: Chemical Industry Press, 2009

    龚敏. 金属腐蚀理论及腐蚀控制. 北京: 化学工业出版社, 2009
    [21] Wang H Y, Chen Y H, Bai Z J, et al. Phase relations in the Ta2O5‒WO3‒SiO2 system. Int J Refract Met Hard Mater, 2017, 64: 47 doi: 10.1016/j.ijrmhm.2017.01.004
    [22] Ma A Q, Wang Z, Gao Y Q, et al. The study on the oxidation behavior of TiB2 powder. Light Met, 2009(10): 52 https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS200910014.htm

    马爱琼, 王臻, 高云琴, 等. TiB2粉末的氧化行为研究. 轻金属, 2009(10): 52 https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS200910014.htm
    [23] Zhai J K. High Temperature Metal Corrosion. Beijing: Beihang University Press, 1994

    Zhai J K. High Temperature Metal Corrosion. Beijing: Beihang University Press, 1994
    翟金坤. 金属高温腐蚀. 北京: 北京航空航天大学出版社, 1994
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  374
  • HTML全文浏览量:  124
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-05
  • 刊出日期:  2019-04-27

目录

    /

    返回文章
    返回