合金元素对Fe基金刚石节块胎体组织及性能的影响

高雅 纠永涛 于新泉 于奇

高雅, 纠永涛, 于新泉, 于奇. 合金元素对Fe基金刚石节块胎体组织及性能的影响[J]. 粉末冶金技术, 2019, 37(2): 104-111. doi: 10.19591/j.cnki.cn11-1974/tf.2019.02.004
引用本文: 高雅, 纠永涛, 于新泉, 于奇. 合金元素对Fe基金刚石节块胎体组织及性能的影响[J]. 粉末冶金技术, 2019, 37(2): 104-111. doi: 10.19591/j.cnki.cn11-1974/tf.2019.02.004
GAO Ya, JIU Yong-tao, YU Xin-quan, YU Qi. Effect of alloy elements on microstructures and properties of Fe-based matrixes for diamond segment[J]. Powder Metallurgy Technology, 2019, 37(2): 104-111. doi: 10.19591/j.cnki.cn11-1974/tf.2019.02.004
Citation: GAO Ya, JIU Yong-tao, YU Xin-quan, YU Qi. Effect of alloy elements on microstructures and properties of Fe-based matrixes for diamond segment[J]. Powder Metallurgy Technology, 2019, 37(2): 104-111. doi: 10.19591/j.cnki.cn11-1974/tf.2019.02.004

合金元素对Fe基金刚石节块胎体组织及性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2019.02.004
基金项目: 

国家重点研发计划资助项目 2017YFB0305701

河南省创新型科技人才队伍建设工程(中原学者)资助项目 172101510003

详细信息
    通讯作者:

    高雅,E-mail: elegance54@163.com

  • 中图分类号: TF124

Effect of alloy elements on microstructures and properties of Fe-based matrixes for diamond segment

More Information
  • 摘要: 选取Fe、Cu、Sn、Ni四种金属粉末作为烧结金刚石节块的胎体材料,设计混料试验预测成分变化对胎体性能的影响规律。结果表明:胎体中主要含α-Fe相、γ(Fe,Ni)相、Cu13.7Sn固溶体和Cu3Sn化合物。随Sn质量分数的升高,Cu13.7Sn固溶体减少,脆性Cu3Sn相增多,当Sn质量分数增大到一定程度后,组织中Cu13.7Sn固溶体全部转化成Cu3Sn脆性相,因此,胎体硬度先增高后趋于稳定;Sn质量分数越高,胎体中脆性相越多,割裂基体,胎体抗弯强度下降。Ni易固溶于Cu、Fe中,产生固溶强化,Ni质量分数升高,胎体硬度和抗弯强度均有一定程度的提高;在Sn质量分数较低时,Cu质量分数越高,Cu13.7Sn固溶体量越多,胎体硬度下降;在Sn质量分数较高时,Cu质量分数越高,组织中脆性Cu3Sn相量越多,胎体硬度提高。Cu易与Ni、Fe形成置换式固溶体,产生固溶强化作用,Cu质量分数的升高对胎体抗弯强度有一定程度的提高。
  • 图  1  胎体热压烧结工艺流程

    Figure  1.  Hot-pressing sintering process of the matrixes

    图  2  Sn质量分数对胎体硬度的影响(Cu质量分数25%)

    Figure  2.  Effect of Sn content by mass on the hardness of matrix (Cu mass fraction: 25%)

    图  3  Ni质量分数对胎体硬度的影响(Sn质量分数10%)

    Figure  3.  Effect of Ni content by mass on the hardness of matrix (Sn mass fraction: 10%)

    图  4  Cu质量分数对胎体硬度的影响(Ni质量分数5%)

    Figure  4.  Effect of Cu content by mass on the hardness of matrix (Ni mass fraction: 5%)

    图  5  Sn质量分数对胎体抗弯强度的影响(Cu质量分数25%)

    Figure  5.  Effect of Sn content by mass in matrix on bending strength (Cu mass fraction: 25%)

    图  6  Ni质量分数对胎体抗弯强度的影响(Sn质量分数10%)

    Figure  6.  Effect of Ni content by mass in matrix on bending strength (Sn mass fraction: 10%)

    图  7  Cu质量分数对胎体抗弯强度的影响(Ni质量分数5%)

    Figure  7.  Effect of Cu content by mass in matrix on bending strength (Ni mass fraction: 5%)

    图  8  不同配比胎体粉末烧结后的微观组织:(a)9#;(b)10#;(c)11#;(d)12#;(e)13#;(f)14#;(g);15#

    Figure  8.  Microstructures of the matrixes sintered by different powders: (a) 9#; (b) 10#; (c) 11#; (d) 12#; (e) 13#; (f) 14#; (g) 15#

    图  9  14#烧结胎体的X射线衍射图谱

    Figure  9.  XRD patterns of 14# sintered matrix

    表  1  极端顶点法的胎体配方试验设计及结果

    Table  1.   Experimental design and results of extreme vertex method for the diamond segment matrixes

    试验
    编号
    元素质量分数/% HRB,y1 抗弯强度,y2/MPa
    Fe,x1 Cu,x2 Sn,x3 Ni,x4
    1# 0.720 0.20 0.05 0.030 95.57 1092.26
    2# 0.670 0.20 0.05 0.080 95.86 1213.15
    3# 0.620 0.20 0.15 0.030 97.96 377.14
    4# 0.570 0.20 0.15 0.080 101.94 398.28
    5# 0.620 0.30 0.05 0.030 92.43 1126.38
    6# 0.570 0.30 0.05 0.080 95.51 1131.42
    7# 0.520 0.30 0.15 0.030 98.93 502.28
    8# 0.470 0.30 0.15 0.080 103.54 542.18
    9# 0.645 0.20 0.10 0.055 99.75 674.83
    10# 0.545 0.30 0.10 0.055 98.31 926.00
    11# 0.645 0.25 0.05 0.055 95.12 1138.58
    12# 0.545 0.25 0.15 0.055 99.67 400.07
    13# 0.62 0.25 0.10 0.030 98.94 797.03
    14# 0.57 0.25 0.10 0.080 97.72 827.02
    15# 0.595 0.25 0.10 0.055 100.29 755.78
    下载: 导出CSV

    表  2  胎体洛氏硬度与抗弯强度的实验值和计算值

    Table  2.   Experimental and calculated values of Rockwell hardness and bending strength of the matrixes

    试验编号 硬度,HRB 抗弯强度/MPa
    实验值 计算值 误差/% 实验值 计算值 误差/%
    1# 95.57 95.88 0.32 1092.26 1098.05 0.53
    2# 95.86 95.87 0.01 1213.15 1181.94 2.57
    3# 97.96 98.57 0.62 377.14 338.75 10.18
    4# 101.94 101.17 0.76 398.28 390.19 2.03
    5# 92.43 93.04 0.66 1126.38 1137.68 1.00
    6# 95.51 94.74 0.80 1131.42 1173.03 3.68
    7# 98.93 98.76 0.17 502.28 536.70 6.85
    8# 103.54 103.07 0.45 542.18 539.60 0.48
    9# 99.75 99.58 0.17 674.83 746.73 10.65
    10# 98.31 99.11 0.81 926.00 841.25 9.15
    11# 95.12 94.96 0.17 1138.58 1111.08 2.42
    12# 99.67 100.47 0.80 400.07 414.71 3.66
    13# 98.94 97.57 1.38 797.03 783.90 1.64
    14# 97.72 99.72 2.05 827.02 827.29 0.03
    15# 100.29 99.03 1.26 755.78 781.49 3.40
    下载: 导出CSV

    表  3  图 8中各点能谱分析结果

    Table  3.   EDS results of the points in Fig. 8

    图 8中位置 元素原子数分数/%
    Fe Cu Sn Ni
    1 93.73 2.79 0.40 3.09
    2 88.96 3.45 1.11 6.49
    3 2.64 85.03 10.91 1.43
    4 1.79 62.11 27.82 7.56
    5 1.96 87.62 8.11 2.31
    6 4.46 61.69 25.02 8.83
    7 3.71 86.75 7.30 2.23
    8 2.61 54.05 26.14 17.19
    9 3.21 63.75 25.93 7.10
    10 5.15 83.43 10.60 0.82
    11 5.68 63.39 25.97 4.97
    12 3.12 81.63 11.63 3.62
    13 1.73 59.49 28.76 10.01
    14 2.38 86.23 9.94 1.45
    15 2.15 67.07 24.50 6.28
    下载: 导出CSV
  • [1] Jia C C, Song Y Q, Yu M, et al. Effects of rare earth element lanthanum on the microstructure of copper matrix diamond tool materials. Rare Met, 2002, 21(2): 90 http://qikan.cqvip.com/Qikan/Article/Detail?id=8390803
    [2] Long W M, Zhu K, Qiao P X, et al. Study on the welding technology of diamond saw blade. Diamond Abras Eng, 2002, 129(3): 27 doi: 10.3969/j.issn.1006-852X.2002.03.006

    龙伟民, 朱坤, 乔培新, 等. 金刚石锯片焊接技术的研究. 金刚石与磨料磨具工程, 2002, 129(3): 27 doi: 10.3969/j.issn.1006-852X.2002.03.006
    [3] Wang L, Guo S H, Gao J Y, et al. Microwave sintering behavior of FeCuCo based metallic powder for diamond alloy tool bit. J Alloys Compd, 2017, 727: 94 doi: 10.1016/j.jallcom.2017.08.132
    [4] Costa M M, Flores P, Pereira D, et al. Nickel-cobalt-based materials for diamond cutting tools. Int J Adv Manuf Technol, 2018, 95(1-4): 1059 doi: 10.1007/s00170-017-1226-9
    [5] Oliveira F A C, Anjinho C A, Coelho A, et al. PM materials selection: The key for improved performance of diamond tools. Met Powder Rep, 2017, 72(5): 339 doi: 10.1016/j.mprp.2016.04.002
    [6] Liu Y B, Xu Q, Xu L. Characteristics, status analysis and development trend of metal powders for diamond tools. Powder Metall Ind, 2017, 27(4): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201704001.htm

    刘一波, 徐强, 徐良. 金刚石工具用金属粉末的特性、现状分析和发展趋势. 粉末冶金工业, 2017, 27(4): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201704001.htm
    [7] Damiri S, Pouretedal H R, Bakhshi O. An extreme vertices mixture design approach to the optimization of methylal production process using p-toluenesulfonic acid as catalyst. Chem Eng Res Des, 2016, 112: 155 doi: 10.1016/j.cherd.2016.06.012
    [8] Guan Y N. Mixture Experimental Design. Shanghai: Shanghai Scientific & Technical Publishers, 1990

    关颖男. 混料试验设计. 上海: 上海科学技术出版社, 1990
    [9] Huang P Y. Theory of Powder Metallurgy. 2nd Ed. Beijing: Metallurgical Industry Press, 2004

    黄培云. 粉末冶金原理. 2版. 北京: 冶金工业出版社, 2004
    [10] Fan J L, Huang B Y, Qu X H, et al. Densification mechanism of liquid phase sintered tungsten heavy alloy during initial solid state sintering stage. Chin J Nonferrous Met, 1998, 8(Suppl 1): 36 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ8S1.006.htm

    范景莲, 黄伯云, 曲选辉, 等. 液相烧结高比重合金早期固相烧结阶段的致密化机理. 中国有色金属学报, 1998, 8(增刊1): 36 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ8S1.006.htm
    [11] Dai Q L, Wu H Z. Research on Fe-based matrix of diamond saw-blade. Diamond Abras Eng, 2000, 118(4): 19 doi: 10.3969/j.issn.1006-852X.2000.04.005

    戴秋莲, 吴惠贞. 铁基金刚石圆锯片胎体材料的研究. 金刚石与磨料磨具工程, 2000, 118(4): 19 doi: 10.3969/j.issn.1006-852X.2000.04.005
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  272
  • HTML全文浏览量:  111
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-05
  • 刊出日期:  2019-04-27

目录

    /

    返回文章
    返回