烧结温度对锂离子电池负极材料Li4Ti5O12性能的影响

亢静锐 董桂霞 李雷 李宗峰 杨双娟

亢静锐, 董桂霞, 李雷, 李宗峰, 杨双娟. 烧结温度对锂离子电池负极材料Li4Ti5O12性能的影响[J]. 粉末冶金技术, 2019, 37(2): 140-146. doi: 10.19591/j.cnki.cn11-1974/tf.2019.02.010
引用本文: 亢静锐, 董桂霞, 李雷, 李宗峰, 杨双娟. 烧结温度对锂离子电池负极材料Li4Ti5O12性能的影响[J]. 粉末冶金技术, 2019, 37(2): 140-146. doi: 10.19591/j.cnki.cn11-1974/tf.2019.02.010
KANG Jing-rui, DONG Gui-xia, LI Lei, LI Zong-feng, YANG Shuang-juan. Influence of sintering temperature on the properties of Li4Ti5O12 anode material for lithium-ion batteries[J]. Powder Metallurgy Technology, 2019, 37(2): 140-146. doi: 10.19591/j.cnki.cn11-1974/tf.2019.02.010
Citation: KANG Jing-rui, DONG Gui-xia, LI Lei, LI Zong-feng, YANG Shuang-juan. Influence of sintering temperature on the properties of Li4Ti5O12 anode material for lithium-ion batteries[J]. Powder Metallurgy Technology, 2019, 37(2): 140-146. doi: 10.19591/j.cnki.cn11-1974/tf.2019.02.010

烧结温度对锂离子电池负极材料Li4Ti5O12性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2019.02.010
基金项目: 

国家国际科技合作计划资助项目 2014DFR50570

详细信息
    通讯作者:

    董桂霞, E-mail: dgx6608@126.com

  • 中图分类号: TM912

Influence of sintering temperature on the properties of Li4Ti5O12 anode material for lithium-ion batteries

More Information
  • 摘要: 采用钛酸四丁酯为钛源、一水合氢氧化锂为锂源,利用水热法制备锂离子电池负极材料Li4Ti5O12(LTO),研究了水热后不同烧结温度对LTO相组成、微观形貌及电化学性能的影响。结果表明:当煅烧温度分别为500、550、600、650、700℃时,烧结LTO均为尖晶石型;500、550、600℃烧结LTO的微观形貌为纳米片状结构,当温度升高到650℃时,LTO出现纳米棒状结构,随着温度继续升高,LTO在700℃时生成较厚的纳米片状结构;当烧结温度为650℃时,LTO的比表面积为94.5907 m2·g-1,气孔体积为0.9663 mL·g-1,此时Li4Ti5O12的放电比容量达到最大值240 mAh·g-1;电流密度100 mA·g-1、循环260次条件下,LTO容量保持率达96.45%,电流密度为1和2 A·g-1、循环1000次条件下,LTO容量保持率达92.97%和77.21%。
  • 图  1  LTO样品X射线衍射图谱:(a)不同烧结温度;(b)(111)晶面局部放大图

    Figure  1.  XRD patterns of LTO samples: (a) sintered at different temperatures; (b) partial enlarged detail of (111) lattice plane

    图  2  不同烧结温度样品的扫描电子显微形貌:(a)500 ℃;(b)550 ℃;(c)600 ℃;(d)650 ℃;(e)700 ℃

    Figure  2.  SEM images of LTO samples sintered at different temperatures: (a) 500 ℃; (b) 550 ℃; (c) 600 ℃; (d) 650 ℃; (e) 700 ℃

    图  3  不同烧结温度LTO样品的N2吸附-脱附等温线和孔径分布图

    Figure  3.  N2 desorption-sorption isotherms and pore diameter distribution of LTO samples sintered at different temperatures

    图  4  不同烧结温度下LTO电极倍率性能图:(a)首次充放电曲线;(b)20~4000 mA·g-1电流密度下充放电曲线

    Figure  4.  LTO electrodes rate performance at different sintering temperatures: (a) first charge/discharge capacities curve; (b) charge‒discharge capacities curve at 20 to 4000 mA g-1

    图  5  LTO电极循环伏安曲线:(a)不同烧结温度LTO循环伏安曲线;(b)不同扫描速率下650 ℃烧结LTO循环伏安曲线

    Figure  5.  CV curves of LTO electrodes: (a) sintered at different sintering temperatures; (b) sintered at 650 ℃ in different scan rates

    图  6  不同烧结温度LTO电极的电化学阻抗图

    Figure  6.  Nyquist plots of LTO electrodes sintered at different sintering temperatures

    图  7  650 ℃烧结LTO电极充放电过程电化学平台曲线

    Figure  7.  Galvanostatic voltage profile of LTO electrode sintered at 650 ℃ in charge/discharge process

    图  8  LTO电极的循环性能和库伦效率:(a)100 mA·g-1;(b)1和2 A·g-1

    Figure  8.  Cycling performance and coulombic efficiency of electrodes: (a) 100 mA·g-1; (b) 1 and 2 A·g-1

    表  1  不同烧结温度下LTO样品的比表面积和孔体积

    Table  1.   Specific surface area and pore volume of LTO samples sintered at different temperatures

    温度/℃ 比表面积/(m2·g-1) 孔体积/(mL·g-1)
    500 37.1633 0.2552
    550 71.3419 0.8075
    600 85.3326 0.8623
    650 94.5907 0.9663
    700 45.8839 0.4178
    下载: 导出CSV

    表  2  不同烧结温度下不同电流密度时LTO样品的放电比容量

    Table  2.   Discharge capacities of LTO samples sintered at different temperatures in different current densities

    温度/℃ 放电比容量/(mAh·g-1)
    20 mA·g-1 100 mA·g-1 500 m A·g-1 1 A·g-1 2 A·g-1 4 A·g-1
    500 142.0 112.9 95.8 86.7 72.7 56.7
    550 164.2 141.1 125.1 115.9 103.3 83.4
    600 222.4 175.1 152.0 143.6 133.5 119.0
    650 240.0 203.8 190.1 184.3 172.6 150.0
    700 231.1 177.1 159.6 147.0 133.4 129.3
    下载: 导出CSV

    表  3  不同烧结温度下电解液电阻(RE)和电荷迁移电阻(RCT)数值

    Table  3.   Electrolyte resistance (RE) and charge transfer resistance (RCT) at different sintering temperatures

    温度/℃ RE RCT
    500 2.71 211.29
    550 2.10 127.30
    600 4.39 192.01
    650 1.80 69.20
    700 2.36 93.04
    下载: 导出CSV
  • [1] Wang Q F, Huang Y, Miao J, et al. Synthesis and electrochemical characterizations of Ce doped SnS2 anode materials for rechargeable lithium ion batteries. Electrochim Acta, 2013, 93(4): 120 http://www.sciencedirect.com/science/article/pii/S0013468613001047
    [2] Ji J H, Qin G Q, Qi M F, et al. Preparation and application progress of Li4Ti5O12 anode material. Chin Battery Ind, 2017, 21(5): 45 doi: 10.3969/j.issn.1008-7923.2017.05.012

    季俊红, 秦国强, 齐满富, 等. Li4Ti5O12负极材料的制备及应用研究进展. 电池工业, 2017, 21(5): 45 doi: 10.3969/j.issn.1008-7923.2017.05.012
    [3] Hou L, He X B, Wu M, et al. The influence of carbon content on electrochemical properties of lithium vanadium phosphate. Powder Metall Technol, 2014, 32(6): 403 http://pmt.ustb.edu.cn/article/id/fmyjjs201406001

    侯磊, 何新波, 吴茂, 等. 碳含量对磷酸钒锂电化学性能的影响. 粉末冶金技术, 2014, 32(6): 403 http://pmt.ustb.edu.cn/article/id/fmyjjs201406001
    [4] Yang J, Zhou X Y, Zou Y L, et al. A hierarchical porous carbon material for high power, lithium ion batteries. Electrochim Acta, 2011, 56(24): 8576 doi: 10.1016/j.electacta.2011.07.047
    [5] Kan S Y, Yuan M J, Liu F, et al. Mechanism and electrochemical performance of Li4Ti5O12 prepared using Li2TiO3 as raw material. Chin J Nonferrous Met, 2015, 25(3): 697 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201503020.htm

    阚素荣, 袁敏娟, 刘菲, 等. 以Li2TiO3为原料合成Li4Ti5O12的机理和电化学性能. 中国有色金属学报, 2015, 25(3): 697 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201503020.htm
    [6] Yun B N, Du H L, Hwang J Y, et al. Improved electrochemical performance of boron-doped carbon-coated lithium titanate as an anode material for sodium-ion batteries. J Mater Chem A, 2016, 5(6): 1 http://smartsearch.nstl.gov.cn/paper_detail.html?id=2f06764010f34701eaa6c67b7209a2e8
    [7] Cheng Q, Tang S, Liu C, et al. Recent advances of Li4Ti5O12 as anode material for high power lithium-ion batteries. J Funct Mater, 2017, 48(12): 12017 https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201712004.htm

    程琦, 汤舜, 刘畅, 等. 高倍率钛酸锂负极材料的研究进展. 功能材料, 2017, 48(12): 12017 https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201712004.htm
    [8] Fu A A, Zhang Q W, Gao J, et al. Review of anode material Li4Ti5O12 for lithium ion battery. Chin J Power Sources, 2013, 37(12): 2239 doi: 10.3969/j.issn.1002-087X.2013.12.050

    付安安, 张庆武, 高剑, 等. 锂离子电池负极材料Li4Ti5O12的研究进展. 电源技术, 2013, 37(12): 2239 doi: 10.3969/j.issn.1002-087X.2013.12.050
    [9] He Z Q, Xiong L Z, Wu X M, et al. In-situ polymerization method preparation and electrochemical properties of Li4Ti5O12-polyaniline anode material for lithium ion batteries. Chin J Nonferrous Met, 2008, 18(Spec 1): 316 https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGYY200804001062.htm

    何则强, 熊利芝, 吴显明, 等. 原位聚合法制备锂离子电池负极材料Li4Ti5O12-PAn及其电化学性质. 中国有色金属学报, 2008, 18(专辑1): 316 https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGYY200804001062.htm
    [10] Tang B, Li A, Tong Y, et al. Carbon-coated Li4Ti5O12 tablets derived from metal-organic frameworks as anode material for lithium-ion batteries. J Alloys Compd, 2017, 708: 6 doi: 10.1016/j.jallcom.2017.02.279
    [11] Sha Y J, Li L, Wei S Y, et al. Appraisal of carbon-coated Li4Ti5O12 acanthospheres from optimized two-step hydrothermal synthesis as a superior anode for sodium-ion batteries. J Alloys Compd, 2017, 705: 164 doi: 10.1016/j.jallcom.2017.02.126
    [12] Ming H, Ming J, Li X W. Hierarchical Li4Ti5O12 particles co-modified with C & N towards enhanced performance in lithium-ion battery applications. Electrochim Acta, 2014, 116: 224 doi: 10.1016/j.electacta.2013.11.038
    [13] Chang K K, Baben M T, Music D, et al. Estimation of the activation energy for surface diffusion during metastable phase formation. Acta Mater, 2015, 98: 135 doi: 10.1016/j.actamat.2015.07.029
    [14] Ni H F. Research on Structural Design and Doping Modification of Li4Ti5O12 Anode Materials [Dissertation]. Beijing: University of Science and Technology Beijing, 2015

    倪海芳. 钛酸锂负极材料的结构设计及掺杂改性研究[学位论文]. 北京: 北京科技大学, 2015
    [15] Chen Y E, Mao H T, Ma J, et al. Biomonitoring chromium Ⅲ or Ⅵ soluble pollution by moss chlorophyll fluorescence. Chemosphere, 2018, 194: 220 doi: 10.1016/j.chemosphere.2017.11.177
    [16] Dong S Y, Wang X Y, Shen L F, et al. Trivalent Ti self-doped Li4Ti5O12: A high performance anode material for lithium-ion capacitors. J Electroanal Chem, 2015, 757: 1 doi: 10.1016/j.jelechem.2015.09.002
    [17] Bourget L, Corriu R J P, Leclercq D, et al. Non-hydrolytic sol-gel routes to silica. J Non-Cryst Solids, 1998, 242(2-3): 81 doi: 10.1016/S0022-3093(98)00789-3
    [18] Aboulaich A, Lorret O, Boury B, et al. Surfactant-free organo-soluble silica-titania and silica nanoparticles. Chem Mater, 2009, 21(13): 2577 doi: 10.1021/cm900291p
    [19] Kang X H, Jiang H. Effect of different kinds of conductive additives on electrochemical character of Li4Ti5O12. J Beijing Jiaotong Univ, 2010, 34(3): 63 doi: 10.3969/j.issn.1673-0291.2010.03.011

    康晓红, 江红. 导电剂对锂离子电池负极材料钛酸锂电化学性能的影响. 北京交通大学学报, 2010, 34(3): 63 doi: 10.3969/j.issn.1673-0291.2010.03.011
    [20] He Y S, Muhetaer A, Li J M, et al. Ultrathin Li4Ti5O12 nanosheet based hierarchical microspheres for high-rate and long-cycle life Li-ion batteries. Adv Energy Mater, 2017, 7(21): 1700950 doi: 10.1002/aenm.201700950
    [21] Yang J W. Development of Li4Ti5O12 Negative Electrode Materials for Hybrid Supercapacitors and Study on Correlative Mechanisms [Dissertation]. Changsha: Central South University, 2005

    杨建文. Li4Ti5O12基混合超级电容器负极材料的开发及相关机理研究[学位论文]. 长沙: 中南大学, 2005
    [22] Pang W K, Peterson V K, Sharma N, et al. Lithium migration in Li4Ti5O12 studied using in situ neutron powder diffraction. Chem Mater, 2014, 26(7): 2318 doi: 10.1021/cm5002779
    [23] Pohjalainen E, Rauhala T, Valkeapää M, et al. Effect of Li4Ti5O12 particle size on the performance of lithium ion battery electrodes at high C-rates and low temperatures. J Phys Chem C, 2015, 119(5): 2277 doi: 10.1021/jp509428c
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  251
  • HTML全文浏览量:  216
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-22
  • 刊出日期:  2019-04-27

目录

    /

    返回文章
    返回