制动摩擦材料研究进展

邱倩 纪箴 杜建华 贾成厂 陈明营 武秋池 吴超 钱铸 郑秀峰

邱倩, 纪箴, 杜建华, 贾成厂, 陈明营, 武秋池, 吴超, 钱铸, 郑秀峰. 制动摩擦材料研究进展[J]. 粉末冶金技术, 2019, 37(2): 153-158. doi: 10.19591/j.cnki.cn11-1974/tf.2019.02.012
引用本文: 邱倩, 纪箴, 杜建华, 贾成厂, 陈明营, 武秋池, 吴超, 钱铸, 郑秀峰. 制动摩擦材料研究进展[J]. 粉末冶金技术, 2019, 37(2): 153-158. doi: 10.19591/j.cnki.cn11-1974/tf.2019.02.012
QIU Qian, JI Zhen, DU Jian-hua, JIA Cheng-chang, CHEN Ming-ying, WU Qiu-chi, WU Chao, QIAN Zhu, ZHENG Xiu-feng. Research progress of brake friction materials[J]. Powder Metallurgy Technology, 2019, 37(2): 153-158. doi: 10.19591/j.cnki.cn11-1974/tf.2019.02.012
Citation: QIU Qian, JI Zhen, DU Jian-hua, JIA Cheng-chang, CHEN Ming-ying, WU Qiu-chi, WU Chao, QIAN Zhu, ZHENG Xiu-feng. Research progress of brake friction materials[J]. Powder Metallurgy Technology, 2019, 37(2): 153-158. doi: 10.19591/j.cnki.cn11-1974/tf.2019.02.012

制动摩擦材料研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2019.02.012
详细信息
    通讯作者:

    纪箴, E-mail: jizhen@mater.ustb.edu.cn

  • 中图分类号: TG142.71

Research progress of brake friction materials

More Information
  • 摘要: 制动摩擦材料利用运动表面相接触时所产生的摩擦阻力达到减速或终止运动目的,是运载机械中安全保障装置的重要组成部分。本文综述了半金属基、金属基及非金属基制动摩擦材料的研究现状及优缺点,介绍了熔铸法、粉末冶金法及三维编织法等制动摩擦材料制备方法,并从摩擦、磨损、热稳定性等方面分析了制动摩擦材料的关键特性。从研究状况可知,摩擦材料正向少纤维、无纤维型方向发展,高性能、环保型摩擦材料具有较大的发展优势。优化制备工艺、降低生产成本、提高性能、扩大应用领域将是未来制动摩擦材料的研究重点。
  • 图  1  粉末冶金制备制动摩擦材料流程工序

    Figure  1.  Preparation process of brake friction materials by powder metallurgy

    图  2  磨粒磨损表面扫描电子显微形貌

    Figure  2.  Scanning electron microscope (SEM) image of abrasive wear in friction material surface

    表  1  常用增强纤维的种类及性能

    Table  1.   Types and properties of reinforcing fibers

    纤维种类 密度/(g·cm‒3) 拉伸强度/GPa 弹性模量/GPa 断裂伸长率/% 摩擦磨损
    碳纤维 1.5~2.0 2~7 230~430 1.5~2.4
    钢纤维 7.8 1.8~2.0 200 2.3
    芳纶纤维 1.44 2.67 58 8
    钛酸钾晶须 3.37 280
    下载: 导出CSV
  • [1] Ma H T, Zhang Y T, Yang J. Research progress of automobile braking friction materials. Mod Manuf Technol Equip, 2011(5): 76 doi: 10.3969/j.issn.1673-5587.2011.05.037

    马洪涛, 张勇亭, 杨军. 汽车制动摩擦材料研究进展. 现代制造技术与装备, 2011(5): 76 doi: 10.3969/j.issn.1673-5587.2011.05.037
    [2] Huang F H, Wang S Q, Zhang C R, et al. A review of advanced brake disc materials. Mater Rev, 2012, 26(10): 59 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201219015.htm

    黄飞虎, 王思青, 张长瑞, 等. 高性能刹车材料的研究现状与发展趋势. 材料导报, 2012, 26(10): 59 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201219015.htm
    [3] Bernard S S, Jayakumari L S. Effect of the properties of natural resin binder in a high friction composite material. Polimeros, 2014, 24(2): 149 doi: 10.4322/polimeros.2014.038
    [4] Etemadi H, Shojaei A, Jahanmard P. Effect of alumina nanoparticle on the tribological performance of automotive brake friction materials. J Reinf Plast Compos, 2014, 33(2): 166 doi: 10.1177/0731684413507011
    [5] Rimdusit S, Tiptipakorn S, Jubsilp C, et al. Polybenzoxazine alloys and blends: Some unique properties and applications. React Funct Polym, 2013, 73(2): 369 doi: 10.1016/j.reactfunctpolym.2012.04.022
    [6] Zhong L, Chen M Q. Research situation and development of friction material for brake pads. Synth Mater Aging Appl, 2017, 46(6): 84 https://www.cnki.com.cn/Article/CJFDTOTAL-HOCE201706018.htm

    钟厉, 陈梦青. 刹车片摩擦材料的研究现状与发展趋势. 合成材料老化与应用, 2017, 46(6): 84 https://www.cnki.com.cn/Article/CJFDTOTAL-HOCE201706018.htm
    [7] Wang Y, Zhou Y K, Nie H W. Tribological performance of semimetal friction material with different functional constituents. Non-Met Mines, 2015, 38(5): 81 doi: 10.3969/j.issn.1000-8098.2015.05.025

    王玥, 周元康, 聂华伟. 增强组分对半金属摩擦材料摩擦学性能的影响. 非金属矿, 2015, 38(5): 81 doi: 10.3969/j.issn.1000-8098.2015.05.025
    [8] Zhang C, Wu J, Huang Z, et al. The study on tribological properties of friction material reinforced by the steel and copper fibers. Mech Des Manuf, 2017(Suppl 1): 52 https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ2017S1014.htm

    张超, 吴娟, 黄镇, 等. 钢/铜混杂纤维增强摩擦材料摩擦学性能研究. 机械设计与制造, 2017(增刊1): 52 https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ2017S1014.htm
    [9] Wang X F, Yin C L. Application situations of powder metallurgy friction materials and requests for raw materials. Powder Metall Ind, 2017, 27(3): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201703001.htm

    王秀飞, 尹彩流. 粉末冶金摩擦材料的应用现状及对原材料的要求. 粉末冶金工业, 2017, 27(3): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201703001.htm
    [10] Bai T Q, Wang X F, Zhong Z G, et al. Effects of friction components on friction properties of powder metallurgy friction materials. Mater Sci Eng Powder Metall, 2006, 11(6): 345 doi: 10.3969/j.issn.1673-0224.2006.06.006

    白同庆, 王秀飞, 钟志刚, 等. 摩擦组元对粉末冶金摩擦材料摩擦性能的影响. 粉末冶金材料科学与工程, 2006, 11(6): 345 doi: 10.3969/j.issn.1673-0224.2006.06.006
    [11] Yu X, Guo Z M, Yang J, et al. Effect of Fe content and friction components on properties of copper-based powder metallurgy friction material. Powder Metall Technol, 2014, 32(1): 4 doi: 10.3969/j.issn.1001-3784.2014.01.008

    于潇, 郭志猛, 杨剑, 等. Fe含量及摩擦组元对铜基粉末冶金摩擦材料性能的影响. 粉末冶金技术, 2014, 32(1): 4 doi: 10.3969/j.issn.1001-3784.2014.01.008
    [12] Zhou H B, Yao P P, Xiao Y L, et al. Topographical characteristics and wear mechanism of copper-based powder metallurgy friction materials reinforced by SiC particle. Chin J Nonferrous Met, 2014, 24(9): 2272 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201409011.htm

    周海滨, 姚萍屏, 肖叶龙, 等. SiC颗粒强化铜基粉末冶金摩擦材料的表面形貌特征及磨损机理. 中国有色金属学报, 2014, 24(9): 2272 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201409011.htm
    [13] Jiang G P, Yang J F, Xu Y D, et al. Effect of graphitization on microstructure and tribological properties of C/SiC composites prepared by reactive melt infiltration. Compos Sci Technol, 2008, 68(12): 2468 doi: 10.1016/j.compscitech.2008.04.025
    [14] Jiang S Z, Li Z, Xiong X, et al. Preparation and microstructure of C/C‒SiC composites fabricated by warm compressed‒in situ reacted process. J Central South Univ Sci Technol, 2011, 42(6): 1588 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201106016.htm

    姜四洲, 李专, 熊翔, 等. 温压‒原位反应法制备C/C‒SiC复合材料及其显微结构分析. 中南大学学报(自然科学版), 2011, 42(6): 1588 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201106016.htm
    [15] Li Z, Liu Y Z, Zhang B G, et al. Microstructure and tribological characteristics of needled C/C‒SiC brake composites fabricated by simultaneous infiltration of molten Si and Cu. Tribol Int, 2016, 93: 220 doi: 10.1016/j.triboint.2015.08.047
    [16] Xiao P, Li Z, Xiong X, et al. Tribological behaviour and mechanism of C/C‒SiC‒Fe composites at different braking speeds. Chin J Nonferrous Met, 2009, 19(6): 1044 doi: 10.3321/j.issn:1004-0609.2009.06.011

    肖鹏, 李专, 熊翔, 等. 不同制动速度下C/C‒SiC‒Fe材料的摩擦磨损行为及机理. 中国有色金属学报, 2009, 19(6): 1044 doi: 10.3321/j.issn:1004-0609.2009.06.011
    [17] Xu F, Feng X M, Wang Y S. Research on iron based powder metallurgy frictional materials. Hot Working Technol, 2017, 46(14): 110 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201714031.htm

    徐峰, 冯小明, 王永善. 铁基粉末冶金摩擦材料的研制. 热加工工艺, 2017, 46(14): 110 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201714031.htm
    [18] Lü Y Y. Research on Non-Metallic Friction Materials Based on 3D Braided Structure [Dissertation]. Beijing: University of Science and Technology Beijing, 2016

    吕莹莹. 基于三维编织结构的非金属基摩擦材料研究[学位论文]. 北京: 北京科技大学, 2016
    [19] Chen D. Study on Friction and Wear Characteristics and Mechanism of Composite Surface [Dissertation]. Guangzhou: South China University of Technology, 2005

    陈东. 复合材料表面摩擦磨损特性与机理研究[学位论文]. 广州: 华南理工大学, 2005
    [20] Zhong A W, Yao P P, Xiao Y L, et al. Tribological behaviors and reliability life of Cu-based friction materials for space applications in vacuum at room temperature. Mater Sci Eng Powder Metall, 2018, 23(1): 110 doi: 10.3969/j.issn.1673-0224.2018.01.015

    钟爱文, 姚萍屏, 肖叶龙, 等. 真空常温下空间用铜基粉末冶金摩擦材料的摩擦行为及可靠性寿命. 粉末冶金材料科学与工程, 2018, 23(1): 110 doi: 10.3969/j.issn.1673-0224.2018.01.015
    [21] Xu X, Yang M, Zhang S W, et al. Influence of ingredient of high friction coefficient composite material on the tribological performance. Fiber Reinf Plast Compos, 2017(1): 53 doi: 10.3969/j.issn.1003-0999.2017.01.008

    徐祥, 杨明, 张世伟, 等. 新型高摩合成材料组分对摩擦性能的影响规律研究. 玻璃钢/复合材料, 2017(1): 53 doi: 10.3969/j.issn.1003-0999.2017.01.008
    [22] Lu S J, Fu X S, Sun W T, et al. Properties of resin-based composite friction materials with different contents of modified bauxite. Mater Mech Eng, 2017, 41(1): 85 https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201701018.htm

    卢尚健, 付雪松, 孙胃涛, 等. 不同改性矾土添加量下树脂基复合摩擦材料的性能. 机械工程材料, 2017, 41(1): 85 https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201701018.htm
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  500
  • HTML全文浏览量:  157
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-23
  • 刊出日期:  2019-04-27

目录

    /

    返回文章
    返回