筒体温度对微熔铸半固态熔体A356晶粒形貌的影响

罗晓强 韩永军 冯云晓 于豪 于春波 赵丽恒

罗晓强, 韩永军, 冯云晓, 于豪, 于春波, 赵丽恒. 筒体温度对微熔铸半固态熔体A356晶粒形貌的影响[J]. 粉末冶金技术, 2019, 37(3): 170-174. doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.002
引用本文: 罗晓强, 韩永军, 冯云晓, 于豪, 于春波, 赵丽恒. 筒体温度对微熔铸半固态熔体A356晶粒形貌的影响[J]. 粉末冶金技术, 2019, 37(3): 170-174. doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.002
LUO Xiao-qiang, HAN Yong-jun, FENG Yun-xiao, YU Hao, YU Chun-bo, ZHAO Li-heng. Effect of bucket temperature on grain morphology of semi-solid melt A356 by micro fused-casting[J]. Powder Metallurgy Technology, 2019, 37(3): 170-174. doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.002
Citation: LUO Xiao-qiang, HAN Yong-jun, FENG Yun-xiao, YU Hao, YU Chun-bo, ZHAO Li-heng. Effect of bucket temperature on grain morphology of semi-solid melt A356 by micro fused-casting[J]. Powder Metallurgy Technology, 2019, 37(3): 170-174. doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.002

筒体温度对微熔铸半固态熔体A356晶粒形貌的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.002
基金项目: 

河南省科技厅科技发展计划资助项目 172102210430

详细信息
    通讯作者:

    韩永军, E-mail:hyj73@126.com

  • 中图分类号: TG142.71

Effect of bucket temperature on grain morphology of semi-solid melt A356 by micro fused-casting

More Information
  • 摘要: 研究了筒体温度对微熔铸半固态熔体铝合金A356晶粒形貌的影响。结果表明, 在适当的温度范围内, 配合一定的搅拌速度, 能形成组织均匀、晶粒细小的A356半固态熔体。当筒体温度为620℃, 搅拌速度为800r·min-1时, 可制备出优质的A356半固态熔体, α-Al晶粒的平均尺寸为54μm, 形状因子为0.66, 熔体样品的显微硬度为HV 82.97。
  • 图  1  微熔铸半固态晶粒用石墨坩埚结构

    Figure  1.  Structure of graphite crucible used for semi-solid melt by micro fused-casting

    图  2  晶粒形态表征测量示意图: (a)圆面积; (b)等效面积; (c)等效直径; (d)周长

    Figure  2.  Measurement schematic diagram for grain morphology characterization: (a) circle area; (b) equivalent area; (c) equivalent diameter; (d) perimeter

    图  3  铝合金A356铸锭差示扫描热分析曲线

    Figure  3.  Differential scanning calorimeter curves of A356aluminium alloy ingot

    图  4  不同筒体温度下铝合金A356半固态显微组织形貌: (a) 610℃; (b) 620℃; (c) 630℃; (d) 640℃; (e) 650℃; (f) 660℃

    Figure  4.  Morphology of semi-solid A356 aluminum alloy at different bucket temperatures: (a) 610℃; (b) 620℃; (c) 630℃; (d) 640℃; (e) 650℃; (f) 660℃

    图  5  筒体温度对A356半固态熔体晶粒形态的影响

    Figure  5.  Effect of bucket temperature on the grain morphology of A356 semi-solid melt

    图  6  不同筒体温度下铝合金A356半固态样品的显微硬度

    Figure  6.  Microhardness of semi-solid A356 sample at different bucket temperatures

  • [1] Shamsaei N, Yadollahi A, Bian L, et al. An overview of direct laser deposition for additive manufacturing; Part Ⅱ: mechanical behavior, process parameter optimization and control. Addit Manuf, 2015, 8: 12. http://www.sciencedirect.com/science/article/pii/s2214860415000329
    [2] Thompson S M, Bian L, Shamsaei N, et al. An overview of direct laser deposition for additive manufacturing; Part Ⅰ: transport phenomena, modeling and diagnostics. Addit Manuf, 2015, 8: 36. http://www.sciencedirect.com/science/article/pii/S2214860415000317
    [3] Flemings M C. Behavior of metal alloys in the semisolid state. Metall Trans B, 1991, 22(3): 269. doi: 10.1007/BF02651227
    [4] Zhang H O, Xu J P, Wang G L. Fundamental study on plasma deposition manufacturing. Surf Coat Technol, 2003, 171(1-3): 112. doi: 10.1016/S0257-8972(03)00250-0
    [5] Luo X Q, Yan Q Z, Li Z Y. Effect of the pouring temperature by novel synchronous rolling-casting for metal on microstructure and properties of ZLl04 alloy. JMater Res, 2016, 31(16): 2524. doi: 10.1557/jmr.2016.233
    [6] Rice C S, Mendez P F, Brown S B. Metal solid freeform fabrication using semi-solid slurries. JOM, 2000, 52(12): 31.
    [7] Flemings M C. Solidification processing. Metall Trans, 1974, 5(10): 2121. doi: 10.1007/BF02643923
    [8] Guo J, Xie S S, Huang S H. Preparation of Al alloy in semisolid state. Chin J Rare Met, 1998, 22(6): 424 doi: 10.3969/j.issn.0258-7076.1998.06.007

    郭钧, 谢水生, 黄声宏.半固态铝合金的制备工艺研究.稀有金属, 1998, 22(6): 424 doi: 10.3969/j.issn.0258-7076.1998.06.007
    [9] Spencer D B, Mehrabian R, Flemings M C. Rheological behavior of Sn-15 pct Pb in the crystallization range. Metall Mater Trans B, 1972, 3(7): 1925. doi: 10.1007/BF02642580
    [10] Orme M. A novel technique of rapid solidification net-form materials synthesis. J Mater Eng Perform, 1993, 2(3): 399.
    [11] La P Q, Lu X F, Shen D, et al. Study on high grade vanadium-aluminium alloy prepared by aluminothermic reaction. Powder Metall Technol, 2012, 30(5): 371 doi: 10.3969/j.issn.1001-3784.2012.05.010

    喇培清, 卢学峰, 申达, 等.铝热法制备高钒铝合金的研究.粉末冶金技术, 2012, 30(5): 371 doi: 10.3969/j.issn.1001-3784.2012.05.010
    [12] Piwonka T S, Flemings M C. Pore formation in solidification. Trans Metall Soc AIME, 1966, 236(8): 1157. http://www.researchgate.net/publication/236121233_Pore_formation
    [13] Zhu W Z, Mao W M, Tu Q. Preparation of semi-solid 7075aluminum alloy slurry by serpentine pouring channel. Trans Nonferrous Met Soc China, 2014, 24(4): 954. http://www.sciencedirect.com/science/article/pii/S1003632614631484
    [14] Liu Z Y, Mao W M, Wang W P, et al. Preparation of semi-solid A380 aluminum alloy slurry by serpentine channel. Trans Nonferrous Met Soc China, 2015, 25(5): 1419.
    [15] Luo X Q, Li Z Y, Shi X J, et al. Effect of stirring velocity in micro fused-casting for metal on microstructure and mechanical properties of A356 aluminum alloy slurry. JWuhan Univ Technol Mater Sci, 2016, 31(5): 1131. http://www.cnki.com.cn/Article/CJFDTotal-WLGY201605030.htm
  • 加载中
图(6)
计量
  • 文章访问数:  207
  • HTML全文浏览量:  98
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-24
  • 刊出日期:  2019-06-27

目录

    /

    返回文章
    返回