Cr2AlC含量对铜基复合材料摩擦磨损性能的影响

吴辉 郭彪 李强 敖进清 刘胜明 鲁云

吴辉, 郭彪, 李强, 敖进清, 刘胜明, 鲁云. Cr2AlC含量对铜基复合材料摩擦磨损性能的影响[J]. 粉末冶金技术, 2019, 37(3): 184-190. doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.004
引用本文: 吴辉, 郭彪, 李强, 敖进清, 刘胜明, 鲁云. Cr2AlC含量对铜基复合材料摩擦磨损性能的影响[J]. 粉末冶金技术, 2019, 37(3): 184-190. doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.004
WU Hui, GUO Biao, LI Qiang, AO Jin-qing, LIU Sheng-ming, LU Yun. Effects of Cr2AlC content on friction and wear properties of copper matrix composites[J]. Powder Metallurgy Technology, 2019, 37(3): 184-190. doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.004
Citation: WU Hui, GUO Biao, LI Qiang, AO Jin-qing, LIU Sheng-ming, LU Yun. Effects of Cr2AlC content on friction and wear properties of copper matrix composites[J]. Powder Metallurgy Technology, 2019, 37(3): 184-190. doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.004

Cr2AlC含量对铜基复合材料摩擦磨损性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.004
基金项目: 

教育部春晖计划资助项目 Z2015097

国家自然科学基金资助项目 51504197

四川省粉末冶金工程技术研究中心开放基金资助项目 SC-FMYJ2018-04

淮安市科技局重点研发计划资助项目 HAG201618

西华大学“青年学者后备人才”支持计划资助项目; 西华大学研究生创新基金资助项目 YCJJ2018072

详细信息
    通讯作者:

    郭彪, E-mail:biaoguo_mse@126.com

  • 中图分类号: TF125.5

Effects of Cr2AlC content on friction and wear properties of copper matrix composites

More Information
  • 摘要: 采用冷压-烧结方法制备了含质量分数0%、5%、10%、15%Cr2AlC的铜基复合材料, 利用光学显微镜、扫描电子显微镜及能谱仪观察并分析复合材料微观组织和微区成分, 使用HVS-1000型显微硬度计和M-2000型摩擦磨损试验机测试复合材料的硬度和摩擦磨损性能, 分析Cr2AlC质量分数对复合材料硬度、摩擦性能和磨损机理的影响。结果表明:含Cr2AlC铜基复合材料的相对密度为0.8, Cr2AlC均匀分布在铜基体上, 有效提高了复合材料的硬度; 随Cr2AlC质量分数增加, 复合材料摩擦系数先升高后降低, 磨损量先降低后回升, 当Cr2AlC质量分数为10%时, 复合材料的摩擦系数最大, 磨损量最低, 耐磨性能最佳; 未添加Cr2AlC的纯铜材料磨损机理以黏滑为主, 含Cr2AlC铜基复合材料的磨损机理是犁削磨损、剥层磨损和氧化磨损三者的结合。
  • 图  1  添加不同质量分数Cr2AlC的Cu–Cr2AlC复合材料显微金相组织: (a) 0%; (b) 5%; (c) 10%; (d) 15%

    Figure  1.  Microstructures of Cu–Cr2AlC composites with Cr2AlC in different mass fraction: (a) 0%; (b) 5%; (c) 10%; (d) 15%

    图  2  Cu–Cr2AlC复合材料X射线衍射图谱

    Figure  2.  X-ray diffraction patterns of Cu–Cr2AlC composites

    图  3  添加不同质量分数Cr2AlC的Cu–Cr2AlC复合材料显微硬度

    Figure  3.  Microhardness of Cu–Cr2AlC composites with Cr2AlC in different mass fractions

    图  4  添加不同质量分数Cr2AlC复合材料的摩擦系数(a)和磨损量(b)

    Figure  4.  Friction coefficient (a) and abrasion loss (b) of composites with Cr2AlC in different mass fractions

    图  5  添加不同质量分数Cr2AlC的复合材料摩擦表面显微形貌: (a) 0%; (b) 5%; (c) 10%; (d) 15%

    Figure  5.  Scanning electron microscopy (SEM) friction surface images of composites with Cr2AlC in different mass fractions: (a) 0%; (b) 5%; (c) 10%; (d) 15%, and

    图  6  图 5 (d)摩擦表面区域1处能谱分析

    Figure  6.  Energy disperse spectroscopy (EDS) analysis of area 1 inFig.5(d)

    表  1  复合材料的密度

    Table  1.   Density of the Cu–Cr2AlC composites

    Cr2AlC质量分数/ % 理论密度/ (g·cm-3) 实测密度/ (g·cm-3) 相对密度
    0 8.96 7.20 0.804
    5 8.65 6.89 0.796
    10 8.36 6.67 0.798
    15 8.09 6.48 0.801
    下载: 导出CSV

    表  2  不同颗粒增强铜基复合材料的磨损率[29-31]

    Table  2.   Wear rates of particle reinforced copper matrix composites[29-31]

    材料成分(质量分数) 制备方式 测试方法 速度/ (r·min-1) 载荷 磨损率(相对于纯铜) / %
    Cu–10%Cr2AlC 冷压–烧结 环–块 200 100 N 16
    Cu–9%Ni 热压–烧结 销–盘 500 0.5 MPa 43
    Cu–9%Al2O3 冷压–烧结 环–块 200 100 N 45
    Cu–9%B4C 冷压–烧结 环–块 200 89
    下载: 导出CSV
  • [1] Kelhar L, FerčičJ, Maček-Kržmanc M, et al. The role of Fe and Cu additions on the structural, thermal and magnetic properties of amorphous Al-Ce-Fe-Cu alloys. JNon-Cryst Solids, 2018, 483: 70. doi: 10.1016/j.jnoncrysol.2018.01.003
    [2] Rabiee M, Mirzadeh H, Ataie A. Processing of Cu-Fe and Cu-Fe-SiC nanocomposites by mechanical alloying. Adv Powder Technol, 2017, 28(8): 1882. doi: 10.1016/j.apt.2017.04.023
    [3] BayramÜ, MaraşlıN. Thermal conductivity and electrical resistivity dependences on growth rate in the directionally solidified Al-Cu-Ni eutectic alloy. J Alloys Compd, 2018, 753: 695. doi: 10.1016/j.jallcom.2018.04.277
    [4] Xu X X, Li W B, Wang Y, et al. Study of the preparation of Cu-TiC composites by reaction of soluble Ti and ball-milled carbon coating TiC. Results Phys, 2018, 9: 486. doi: 10.1016/j.rinp.2018.02.059
    [5] Cabezas-Villa J L, Olmos L, Vergara-Hernández H J, et al. Constrained sintering and wear properties of Cu-WCcomposite coatings. Trans Nonferrous Met Soc China, 2017, 27(10): 2214. doi: 10.1016/S1003-6326(17)60247-4
    [6] Wang Y R, Gao Y M, Li Y F, et al. Research on nickel modified graphite/Cu composites interface. Surf Coat Technol, 2017, 328: 70. doi: 10.1016/j.surfcoat.2017.08.036
    [7] Han C S, Guo T M, Nan X L, et al. New research progress in Cu-based composites. Mater Rev, 2012, 26(19): 90 doi: 10.3969/j.issn.1005-023X.2012.19.021

    韩昌松, 郭铁明, 南雪丽, 等.铜基复合材料的研究新进展.材料导报, 2012, 26(19): 90 doi: 10.3969/j.issn.1005-023X.2012.19.021
    [8] Tang G M. Preparation and Properties of Ti2AlN/Cu Composites[Dissertation]. Qinhuangdao: Yanshan University, 2011

    唐公民. Ti2AlN/Cu复合材料的制备及其性能研究, 秦皇岛: 燕山大学, 2011
    [9] Hu M, Zhang Y L, Tang L L, et al. Surface modifying of SiC particles and performance analysis of SiCp/Cu composites. Appl Surf Sci, 2015, 332: 720. doi: 10.1016/j.apsusc.2015.01.130
    [10] Zhang C Y, Liu Y W, Yang Z M, et al. Cathode spot movement on a continuous carbon fiber reinforced Cu matrix composite in vacuum. Vacuum, 2013, 93: 45. doi: 10.1016/j.vacuum.2013.01.004
    [11] Jiang Y H, Wang C, Liang S H, et al. TiB2(-TiB)/Cu in-situ composites prepared by hot-press with the sintering temperature just beneath the melting point of copper. Mater Charact, 2016, 121: 76. doi: 10.1016/j.matchar.2016.09.038
    [12] Gao L Q, Zhou Y, Zhai H X, et al. Research status and progress of Mn+1AXn/Cu composites. Mater Rev, 2006, 20(Suppl 2): 397 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2006S2116.htm

    高立强, 周洋, 翟洪祥, 等. Mn+1AXn三元层状陶瓷增强铜基复合材料的研究进展.材料导报, 2006, 20(增刊2): 397 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2006S2116.htm
    [13] Zhang L Q, Li S B, Chen X D, et al. Abnormal thermal shock behavior in electrical conductivity of Ti2SnC. Prog Nat Sci Mater Int, 2017, 27(4): 527. doi: 10.1016/j.pnsc.2017.06.008
    [14] Cao J, Yin Z W, Li H L, et al. Tribological and mechanical properties of Ti2AlC coating at room temperature and800℃. Ceram Int, 2018, 44(1): 1046. doi: 10.1016/j.ceramint.2017.10.045
    [15] Ying G B. In-situ Synthesis Mechanism and Properties of Cr2AlC, Ti2AlC Ceramics and Their Composites[Dissertation]. Harbin: Harbin Institute of Technology, 2011

    应国兵. Cr2AlC、Ti2AlC陶瓷及其复合材料的原位合成机理与性能的研究, 哈尔滨: 哈尔滨工业大学, 2011
    [16] Zeng J L, Hai W X, Yao R Q, et al. Tribological characteristics of Ti3SiC2/Cu tribo-pairs in sliding electrical contact. Tribology, 2015, 35(1): 102 https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201501017.htm

    曾俊菱, 海万秀, 姚瑞清, 等. Ti3SiC2/Cu摩擦副的载流摩擦学性能.摩擦学学报, 2015, 35(1): 102 https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201501017.htm
    [17] Wu J Y, Zhou Y C, Wang J Y. Tribological behavior of Ti2SnC particulate reinforced copper matrix composites. Mater Sci Eng A, 2006, 422: 266. doi: 10.1016/j.msea.2006.02.010
    [18] Wang S. Preparation and Characterization of Ti2AlC/Cu Composites and Research of Its Friction and Wear Behavior[Dissertation]. Harbin: Harbin Institute of Technology, 2014

    王帅. Ti2AlC/Cu复合材料的制备表征及其摩擦磨损行为研究, 哈尔滨: 哈尔滨工业大学, 2014
    [19] Wei X M. Fabrication and Tribological Properties of Ti3AlC2/Cu Co-continuous Composites[Dissertation]. Beijing: Beijing Jiaotong University, 2016

    位兴民.双连续相Ti3AlC2/Cu复合材料的制备及摩擦学性能研究, 北京: 北京交通大学, 2016
    [20] Lu L. Study on Tribological Behaviors of Cu-Ti3SiC2Composites and Preparation of Porous Ti3SiC2[Dissertation]. Guangzhou: South China University of Technology, 2014

    禄璐. Cu-Ti3SiC2复合材料的摩擦磨损性能及多孔Ti3SiC2的制备, 广州: 华南理工大学, 2014
    [21] Li Y M, Zhao G R, Qian Y H, et al. Deposition of phase-pure Cr2AlC coating by DC magnetron sputtering and post annealing using Cr-Al-C targets with controlled elemental composition but different phase compositions. JMater Sci Technol, 2018, 34: 466. http://www.sciencedirect.com/science/article/pii/S1005030217300403
    [22] Smialek J L, Nesbitt J A, Gabb T P, et al. Hot corrosion and low cycle fatigue of a Cr2AlC-coated superalloy. Mater Sci Eng A, 2018, 711: 119. doi: 10.1016/j.msea.2017.10.098
    [23] Walter C, Sigumonrong D P, El-Raghy T, et al. Towards large area deposition of Cr2AlC on steel. Thin Solid Films, 2006, 515(2): 389. doi: 10.1016/j.tsf.2005.12.219
    [24] Lei Y, Liu J Y, Wang M, et al. Preparation and mechanical properties of Cr2AlC particulate reinforced Cu matrix composites. Powder Metall Technol, 2013, 31(5): 340 doi: 10.3969/j.issn.1001-3784.2013.05.004

    雷宇, 刘锦云, 王敏, 等. Cr2AlC颗粒增强Cu基复合材料的制备及力学性能研究.粉末冶金技术, 2013, 31(5): 340 doi: 10.3969/j.issn.1001-3784.2013.05.004
    [25] Wang X S, Lu Z L, Lin G T, et al. Effect of Cr2AlC content on the properties of a Cu-Cr2AlC composite. Results Phys, 2016, 6: 789. doi: 10.1016/j.rinp.2016.09.020
    [26] Sun L, Guo Y, Liu J Y, et al. The technology research of the Cu-15%Cr2AlC composite prepared by cold-pressing sintering method. Powder Metall Technol, 2015, 33(5): 359 doi: 10.3969/j.issn.1001-3784.2015.05.009

    孙林, 郭阳, 刘锦云, 等.冷压烧结法制备Cu-15%Cr2AlC复合材料工艺研究.粉末冶金技术, 2015, 33(5): 359 doi: 10.3969/j.issn.1001-3784.2015.05.009
    [27] Zeng S, Su Z L, Zhou J. Fabrication and mechanical properties of Cu-Cr2AlC composites. J Xiamen Univ Nat Sci, 2014, 53(5): 739 https://www.cnki.com.cn/Article/CJFDTOTAL-XDZK201405019.htm

    曾舒, 苏忠亮, 周健. Cr2AlC颗粒增强Cu基复合材料的制备与性能表征.厦门大学学报(自然科学版), 2014, 53(5): 739 https://www.cnki.com.cn/Article/CJFDTOTAL-XDZK201405019.htm
    [28] Kong Y R, Guo Q, Zhang D. Review on the interfacial properties of particle-reinforced aluminum matrix composites. Mater Rev, 2015, 29(5): 34 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201509005.htm

    孔亚茹, 郭强, 张荻.颗粒增强铝基复合材料界面性能的研究.材料导报, 2015, 29(5): 34 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201509005.htm
    [29] Yao G X, Niu H W. Effects of nickel on tribological wear properties of copper-based powder metallurgy friction materials. Hot Working Technol, 2016, 45(8): 121 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201608034.htm

    姚冠新, 牛华伟.镍对铜基粉末冶金摩擦材料摩擦磨损性能的影响.热加工工艺, 2016, 45(8): 121 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201608034.htm
    [30] Wang T G, Liang Q C, Qin Q. Effect of Al2O3 content on friction and wear properties of copper-base powder metallurgy friction materials. Powder Metall Ind, 2016, 26(1): 46 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201601012.htm

    王天国, 梁启超, 覃群. Al2O3含量对铜基粉末冶金摩擦材料摩擦磨损性能的影响.粉末冶金工业, 2016, 26(1): 46 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201601012.htm
    [31] Qin Q, Wang T G, Hua J J. Effect of B4C content on friction and wear properties of copper-based powder metallurgy friction materials. Lubr Eng, 2017, 42(8): 77 doi: 10.3969/j.issn.0254-0150.2017.08.014

    覃群, 王天国, 华建杰. B4C含量对铜基粉末冶金摩擦材料摩擦磨损性能的影响.润滑与密封, 2017, 42(8): 77 doi: 10.3969/j.issn.0254-0150.2017.08.014
    [32] Zhan Y Z, Zhang G D. Tribological behavior of SiCparticle reinforced copper matrix composites. Tribology, 2003, 23(6): 495 doi: 10.3321/j.issn:1004-0595.2003.06.009

    湛永钟, 张国定. SiCp/Cu复合材料摩擦磨损行为研究.摩擦学学报, 2003, 23(6): 495 doi: 10.3321/j.issn:1004-0595.2003.06.009
    [33] Zhou H B, Yao P P, Xiao Y L, et al. Topographical characteristics and wear mechanism of copper-based powder metallurgy friction materials reinforced by SiCparticle. Chin J Nonferrous Met, 2014, 24(9): 2272 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201409011.htm

    周海滨, 姚萍屏, 肖叶龙, 等. SiC颗粒强化铜基粉末冶金摩擦材料的表面形貌特征及磨损机理.中国有色金属学报, 2014, 24(9): 2272 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201409011.htm
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  236
  • HTML全文浏览量:  82
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-20
  • 刊出日期:  2019-06-27

目录

    /

    返回文章
    返回