气固反应原位生成TiC颗粒增强钛基复合材料

尤力 杨芳 张策 郭志猛 陈存广 王海英

尤力, 杨芳, 张策, 郭志猛, 陈存广, 王海英. 气固反应原位生成TiC颗粒增强钛基复合材料[J]. 粉末冶金技术, 2019, 37(3): 196-201. doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.006
引用本文: 尤力, 杨芳, 张策, 郭志猛, 陈存广, 王海英. 气固反应原位生成TiC颗粒增强钛基复合材料[J]. 粉末冶金技术, 2019, 37(3): 196-201. doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.006
YOU Li, YANG Fang, ZHANG Ce, GUO Zhi-meng, CHEN Cun-guang, WANG Hai-ying. In-situ synthesized TiC particle-reinforced titanium matrix composites prepared by gas-solid reaction[J]. Powder Metallurgy Technology, 2019, 37(3): 196-201. doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.006
Citation: YOU Li, YANG Fang, ZHANG Ce, GUO Zhi-meng, CHEN Cun-guang, WANG Hai-ying. In-situ synthesized TiC particle-reinforced titanium matrix composites prepared by gas-solid reaction[J]. Powder Metallurgy Technology, 2019, 37(3): 196-201. doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.006

气固反应原位生成TiC颗粒增强钛基复合材料

doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.006
基金项目: 

中央高校基本科研业务费专项资金资助项目 FRF-TP-17-032A1

详细信息
    通讯作者:

    郭志猛, E-mail:zmguo@ustb.edu.cn

  • 中图分类号: TG142.71

In-situ synthesized TiC particle-reinforced titanium matrix composites prepared by gas-solid reaction

More Information
  • 摘要: 以氢化脱氢钛粉为原料, 经冷等静压成型, 在一定温度下通过CH4和钛粉颗粒间的气固反应在钛粉表面原位生成均匀的TiC颗粒, 采用真空烧结技术制备得到氧含量(体积分数)低于0.2%的TiC颗粒增强钛基复合材料。研究表明, TiC颗粒体积分数比可通过气固反应温度和时间控制, 可获得较高体积分数(> 30%)的TiC颗粒增强钛基复合材料。TiC首先在钛粉颗粒表面形成, 烧结过程中, 钛粉颗粒明显阻碍TiC晶粒长大, 细化TiC晶粒; 同时, 过多的TiC颗粒也阻碍烧结过程中钛的自扩散, 降低烧结相对密度。钛粉压坯在700℃、CH4气氛下发生气固反应(30 min), 再经1300℃烧结后获得的相对密度为98.6%的烧结试样, 试样的综合力学性能较好, 抗拉强度为606 MPa, 延伸率达14.4%, 硬度为HV 442。值得注意的是, 较短时间的气固反应不能够保证压坯内外整体实现原位生成均匀TiC颗粒, 导致烧结试样内外组织的不均性。
  • 图  1  气固相反应制备TiC颗粒增强钛基复合材料形貌及实验流程: (a)氢化脱氢钛粉; (b) TiC颗粒增强钛基复合材料

    Figure  1.  Morphology and experimental process of TiC particle-reinforced titanium matrix composites prepared by gas-solid reaction: (a) hydrogenation-dehydrogenation Ti powders; (b) TiC particle-reinforced titanium matrix composites

    图  2  不同温度气固相反应后压坯的X射线衍射图谱

    Figure  2.  XRD patterns of compacts after gas-solid reaction at different temperatures

    图  3  700℃下气固反应5 min制备得到的压坯在1300℃真空烧结组织形貌

    Figure  3.  Microstructures of Ti compacts sintered at 1300℃prepared by gas-solid reaction at 700℃for 5 min

    图  4  不同气固反应温度处理后的压坯烧结相对密度与烧结温度的关系

    Figure  4.  Relationship between relative density and sintering temperature of Ti compacts with and without gas-solid reaction at different temperatures

    图  5  不同气固反应温度下保温30 min的压坯在1300℃烧结的组织形貌: (a) 600℃; (b) 700℃; (c) 800℃; (d) 900℃

    Figure  5.  Microstructures of Ti compacts sintered at 1300℃after gas-solid reaction at different temperatures for 30 min: (a) 600℃; (b) 700℃; (c) 800℃; (d) 900℃

    图  6  Ti–2%TiC (a)和Ti–7%TiC (b)颗粒增强钛基复合材料断口形貌(体积分数)

    Figure  6.  Fracture morphologies of Ti–2%TiC (a) and Ti–7%TiC (b) titanium matrix composites by volume

    表  1  TiC颗粒增强钛基复合材料间隙原子成分(质量分数)

    Table  1.   Contents of interstitial atom by mass in TiC-reinforced titanium matrix composites  %

    气固反应温度/ ℃ 含不同体积分数TiC颗粒增强钛基复合材料 间隙原子质量分数/ %
    N O H
    未反应 Ti 0.063 0.15 0.012
    600 Ti–2%TiC 0.065 0.17 0.009
    700 Ti–7%TiC 0.056 0.20 0.015
    800 Ti–16%TiC 0.070 0.24 0.014
    900 Ti–32%TiC 0.065 0.28 0.007
    下载: 导出CSV

    表  2  在1300℃下烧结的TiC增强钛基试样的力学性能

    Table  2.   Mechanical properties of TiC reinforced titanium matrix composites at 1300℃sintering

    气固反应温度/ ℃ 含不同体积分数TiC颗粒增强钛基复合材料 硬度, HV 抗拉强度/ MPa 屈服强度/ MPa 延伸率/ %
    未反应 Ti 346 538 454 13.2
    600 Ti–2%TiC 360 563 466 6.8
    700 Ti–7%TiC 442 606 503 14.4
    800 Ti–16%TiC 466 648 552 4.3
    900 Ti–32%TiC 492 463
    下载: 导出CSV
  • [1] Tjong S C, Ma Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng R, 2000, 29(s3-4): 49. http://www.sciencedirect.com/science/article/pii/S0927796X00000243
    [2] Morsi K, Patel V V. Processing and properties of titanium-titanium boride(TiBw)matrix composites-a review. J Mater Sci, 2007, 42(6): 2037. doi: 10.1007/s10853-006-0776-2
    [3] Geng L, Ni D R, Zhang J, et al. Hybrid effect of TiBw and TiCp on tensile properties of in situ titanium matrix composites. J Alloys Compd, 2008, 463(1-2): 488. doi: 10.1016/j.jallcom.2007.09.054
    [4] Tang H P, Huang B Y, Liu Y, et al. Progress in powder metallurgy particle reinforced Ti matrix composite. Powder Metall Technol, 2004, 22(5): 293 doi: 10.3321/j.issn:1001-3784.2004.05.008

    汤慧萍, 黄伯云, 刘咏, 等.粉末冶金颗粒增强钛基复合材料研究进展.粉末冶金技术, 2004, 22(5): 293 doi: 10.3321/j.issn:1001-3784.2004.05.008
    [5] Fleck N A, Smith R A. Effect of density on tensile strength, fracture toughness, and fatigue crack propagation behaviour of sintered steel. Powder Metall, 1981, 24(3): 121. doi: 10.1179/pom.1981.24.3.121
    [6] Zadra M, Girardini L. High-performance, low-cost titanium metal matrix composites. Mater Sci Eng A, 2014, 608(1): 155.
    [7] Khurram S, Kingshott P, Wen C. Carbon nanotube reinforced titanium metal matrix composites prepared by powder metallurgy-a review. Crit Rev Solid State Mater Sci, 2015, 40(1): 38. doi: 10.1080/10408436.2014.929521
    [8] Sherif El-Eskandarany M. Structure and properties of nanocrystalline TiC full-density bulk alloy consolidated from mechanically reacted powders. J Alloys Compd, 2000, 305(1-2): 225. doi: 10.1016/S0925-8388(00)00692-7
    [9] Zheng H, Jaganandham K. Thermal conductivity and interface thermal conductance in composites of titanium with graphene platelets. J Heat Transfer, 2014, 136(6): 061301. doi: 10.1115/1.4026488
    [10] Kondoh K, Threrujirapapong T, Imai H, et al. CNTs/TiCreinforced titanium matrix nanocomposites via powder metallurgy and its microstructural and mechanical properties. J Nanomater, 2008, 2008: 127538. http://dl.acm.org/citation.cfm?id=1731639
    [11] Xu D, Lu W J, Yang Z F, et al. In situ technique for synthesizing multiple ceramic particulates reinforced titanium matrix composites(TiB+TiC+Y2O3)/Ti. JAlloys Compd, 2005, 400(1): 216. http://www.sciencedirect.com/science/article/pii/S0925838805003579
    [12] Xie L C, Jiang C H, Lu W J, et al. Investigation on the residual stress and microstructure of(TiB+TiC)/Ti-6Al-4V composite after shot peening. Mater Sci Eng A, 2011, 528(9): 3423. doi: 10.1016/j.msea.2011.01.022
    [13] Yang Y, Yang S L. Research status and development prospect of metal matrix composite reinforced by carbon nano-tubes. Mater Rev, 2007, 21(Suppl 1): 182 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2007S1055.htm

    杨益, 杨盛良.碳纳米管增强金属基复合材料的研究现状及展望.材料导报, 2007, 21(增刊1): 182 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2007S1055.htm
    [14] Zhou P, Qin J N, LüW J, et al. Microstructure and mechanical properties of in-situ synthesized titanium matrix composites prepared by powder metallurgy. Powder Metall Ind, 2009, 19(3): 11 doi: 10.3969/j.issn.1006-6543.2009.03.003

    周鹏, 覃继宁, 吕维洁, 等.粉末冶金制备原位自生钛基复合材料的显微组织和力学性能研究.粉末冶金工业, 2009, 19(3): 11 doi: 10.3969/j.issn.1006-6543.2009.03.003
    [15] Qin Q, Wang T G, Fan H X. Progress in Ti matrix composites fabricated by powder metallurgy in situ method, Powder Metall Ind, 2010, 20(5): 42

    覃群, 王天国, 范宏训.粉末冶金原位合成法制备钛基复合材料的研究进展.粉末冶金工业, 2010, 20(5): 42
    [16] Li S, Sun B, Imai H, et al. Powder metallurgy Ti-TiCmetal matrix composites prepared by in situ reactive processing of Ti-VGCFs system. Carbon, 2013, 61: 216. doi: 10.1016/j.carbon.2013.04.088
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  189
  • HTML全文浏览量:  107
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-09
  • 刊出日期:  2019-06-27

目录

    /

    返回文章
    返回