工艺参数对高铟高锡银基钎料粉末电磁压制成形的影响

张婕 胡建华

张婕, 胡建华. 工艺参数对高铟高锡银基钎料粉末电磁压制成形的影响[J]. 粉末冶金技术, 2019, 37(3): 207-213. doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.008
引用本文: 张婕, 胡建华. 工艺参数对高铟高锡银基钎料粉末电磁压制成形的影响[J]. 粉末冶金技术, 2019, 37(3): 207-213. doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.008
ZHANG Jie, HU Jian-hua. Effect of technological parameters on high indium and high tin silver-based brazing filler metal powders by electromagnetic compaction molding[J]. Powder Metallurgy Technology, 2019, 37(3): 207-213. doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.008
Citation: ZHANG Jie, HU Jian-hua. Effect of technological parameters on high indium and high tin silver-based brazing filler metal powders by electromagnetic compaction molding[J]. Powder Metallurgy Technology, 2019, 37(3): 207-213. doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.008

工艺参数对高铟高锡银基钎料粉末电磁压制成形的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.008
详细信息
    通讯作者:

    张婕, E-mail:490617801@qq.com

  • 中图分类号: TG425

Effect of technological parameters on high indium and high tin silver-based brazing filler metal powders by electromagnetic compaction molding

More Information
  • 摘要: 根据离散元相关理论, 利用EDEM软件对高铟高锡银基钎料粉末电磁压制过程进行仿真模拟, 探究工艺参数对Ag–Cu–Sn–In系钎料压制过程中的影响规律, 分析钎料粉末的致密化行为, 并研究Sn元素和In元素对钎料粉末相对密度的影响; 在不同电压和电容条件下, 对Ag–19.5Cu–15In–15Sn钎料粉末压制过程进行了仿真模拟, 分析不同放电参数对压坯相对密度的影响; 最后通过压制设备制备钎料压坯, 对仿真结果进行验证。结果表明, 在相同压制力下, In质量分数越高, 获得的压坯相对密度越大; 在电容相同的情况下, 电压越大压坯的相对密度越大, 但增幅逐渐减缓; 在电压相同的情况下, 电容越大压坯的相对密度越大, 但增幅大致不变。实验验证结果表明, 仿真误差小于8%, 钎料电磁压制离散元仿真模型具有一定的参考价值。
  • 图  1  Ag–19.5Cu–15In–15Sn钎料电磁高速压制前(a)和压制后(b)示意图(单位:mm)

    Figure  1.  Schematic diagram of Ag–19.5Cu–15In–15Sn brazing filler metals before (a) and after (b) electromagnetic compaction

    图  2  粉体分区示意图

    Figure  2.  Schematic diagram of powder partition

    图  3  各区域颗粒平均速度

    Figure  3.  Average velocity of particles in different partition

    图  4  钎料粉体颗粒平均重叠量随时间变化规律

    Figure  4.  Relationship between the average overlap of brazing filler metal powders and time

    图  5  Ag–19.5Cu–15In–15Sn钎料中In、Sn颗粒平均重叠量随时间变化规律

    Figure  5.  Relationship between the average overlap of In and Sn particles and time in Ag–19.5Cu–15In–15Sn

    图  6  钎料粉体颗粒平均运动速度随时间变化规律

    Figure  6.  Relationship between the average velocity of brazing filler metal powders and time

    图  7  压坯相对密度随电压的变化规律

    Figure  7.  Relationship between the relative density of compact and voltage

    图  8  压坯相对密度随电容的变化规律

    Figure  8.  Relationship between the relative density of compact and capacitance

    图  9  压制模具示意图

    Figure  9.  Schematic diagram of pressing mould

    图  10  仿真与实验压坯相对密度与电压关系曲线

    Figure  10.  Stimulation and experiment curves of relative density and voltage

    表  1  实验用原料金属物理性质

    Table  1.   Physical properties of the raw metals

    原料 熔点/ ℃ 沸点/ ℃ 密度/ (g·cm-3)
    Ag 961.93 2213 10.53
    Cu 1083.40 2567 8.96
    In 156.61 2060 7.30
    Sn 232.00 2270 7.28
    注:高铟高锡银基钎料的熔点为600~650 ℃[6]
    下载: 导出CSV

    表  2  高速压制成形过程数值模拟参数

    Table  2.   Simulation parameters of high speed electromagnetic compaction process

    变量 刚度系数 恢复系数 静摩擦系数 滚动摩擦系数 上模初始速度/ (m·s-1)
    数值 1.2 0.2 0.3 0.1 100
    下载: 导出CSV

    表  3  各区域压坯相对密度

    Table  3.   Relative density of compact in different partition

    时间/ s 上部 中部 下部
    1.0×10-5 0.5796730 0.6323840 0.6070890
    1.5×10-5 0.6632130 0.7109370 0.6655910
    2.0×10-5 0.7474480 0.7807180 0.7421550
    2.5×10-5 0.8333330 0.8393670 0.8262590
    3.0×10-5 0.9032913 0.9087015 0.8954010
    注:相对密度为实际密度与理论密度的比值,理论密度可以根据成分加权算出。
    下载: 导出CSV

    表  4  压坯相对密度随时间的变化规律

    Table  4.   Relationship between the relative density of compact with time

    时间/ s Ag–19.5Cu–30In Ag–19.5Cu–15In–15Sn Ag–19.5Cu–30Sn
    1.0×10-5 0.606098261 0.605965121 0.605948597
    2.0×10-5 0.757089633 0.756272334 0.756246597
    3.0×10-5 0.913675210 0.901737648 0.901696994
    4.0×10-5 0.989807742 0.989751127 0.989707047
    5.0×10-5 0.997195101 0.997083531 0.997033824
    下载: 导出CSV
  • [1] Zhang Q Y, Zhuang H S. Brazing and Soldering Manual. 2nd Ed. Beijing: China Machine Press, 2008

    张启运, 庄鸿寿.钎焊手册. 2版.北京: 机械工业出版社, 2008
    [2] Lin L H, Diao X G, Luo H B. Research status and development trend of domestic and foreign brazing of dissimilar materials. Weld Technol, 2016, 45(8): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-HSJJ201608001.htm

    林丽恒, 刁晓刚, 罗海波.国内外异种材料钎焊的研究现状及发展趋势.焊接技术, 2016, 45(8): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-HSJJ201608001.htm
    [3] Sun B. Study on Production Technology and Microstructure Properties of Ag-Cu-P-Ge Solder for Electronic Packaging Materials[Dissertation]. Changsha: Central South University, 2009

    孙斌. Ag-Cu-P-Ge系电子封装中温钎料生产工艺及组织性能研究, 长沙: 中南大学, 2009
    [4] Qiu F S. Development of the Solder Paste for Aluminum Soldering and Solder Wires for Automated Soldering in Electronic Packaging[Dissertation]. Guangzhou: South China University of Technology, 2015

    丘富顺.电子封装自动软钎焊用焊铝锡膏和焊锡丝的研制, 广州: 华南理工大学, 2015
    [5] Zhang L S. The Study of Low-Melting-Point Filler Metal for Al-Si-Mg Series Alloys Vacuum Brazing[Dissertation]. Tianjin: Hebei University of Technology, 2006

    张连生. Al-Si-Mg系锻铝合金真空钎焊低熔点钎料的研究, 天津: 河北工业大学, 2006
    [6] Liu Y Z, Hu J H, Huang S Y, et al. Densification behavior of powder pressing for Ag-Cu solder. Forg Stamp Technol, 2018, 43(4): 76 https://www.cnki.com.cn/Article/CJFDTOTAL-DYJE201804018.htm

    刘运展, 胡建华, 黄尚宇, 等. Ag-Cu钎料粉末压制致密化行为.锻压技术, 2018, 43(4): 76 https://www.cnki.com.cn/Article/CJFDTOTAL-DYJE201804018.htm
    [7] Hu F, Hu J H, Hu X H, et al. Influence of liquid sintering parameters of electromagnetic pressing BAg45Cu28Zn25Sn2 solder on mechanical properties of brazed joint. Hot Working Technol, 2018, 47(5): 29 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201805007.htm

    胡飞, 胡建华, 胡晓华, 等.电磁压制BAg45Cu28Zn25Sn2钎料的液相烧结参数对钎焊接头力学性能的影响.热加工工艺, 2018, 47(5): 29 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201805007.htm
    [8] Yan S W, Huang S Y, Hu J H, et al. Development and application of numerical simulation in powder metallurgy manufacturing. Powder Metall Technol, 2017, 35(1): 57 doi: 10.3969/j.issn.1001-3784.2017.01.010

    颜士伟, 黄尚宇, 胡建华, 等.数值仿真技术在粉末冶金零件制造中的应用及研究进展.粉末冶金技术, 2017, 35(1): 57 doi: 10.3969/j.issn.1001-3784.2017.01.010
    [9] Nosewicz S, Rojek J, Chmielewski M, et al. Discrete element modeling and experimental investigation of hot pressing of intermetallic NiAl powder. Adv Powder Technol, 2017, 28(7): 1745. doi: 10.1016/j.apt.2017.04.012
    [10] Criss E M, Meyers M A. Braze welding of cobalt with a silver-copper filler. J Mater Res Technol, 2015, 4(1): 44. doi: 10.1016/j.jmrt.2014.11.002
    [11] Meng Z H, Huang S Y, Yang M. Effects of processing parameters on density and electric properties of electric ceramic compacted by low-voltage electromagnetic compaction. J Mater Process Technol, 2009, 209(2): 672. doi: 10.1016/j.jmatprotec.2008.02.038
    [12] Zhang X P, Shi Y W. A dissolution model of base metal in liquid brazing filler metal during high temperature brazing. Scr Mater, 2004, 50(7): 1003. doi: 10.1016/j.scriptamat.2003.12.032
    [13] Yang T Y, Zhang D K, Wang K H, et al. Effect of strontium and SmO on the microstructure and fracture mode of AlSi-Mg2Si brazing filler metal. J Rare Earths, 2016, 34(2): 187. doi: 10.1016/S1002-0721(16)60013-3
    [14] Li H, Tillmann W, Li Z X, et al. Development and application of high quality and high reliability brazing filler materials. Trans China Weld Inst, 2014, 35(4): 108 https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201404026.htm

    李红, Tillmann W, 栗卓新, 等.高品质高可靠性钎料的技术发展和应用.焊接学报, 2014, 35(4): 108 https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201404026.htm
    [15] Wang W, Huang S Y, Liao X, et al. Sintering process and wetting properties of Ag-Cu-In-Sn filler metal with electromagnetic compaction. Hot Working Technol, 2016, 45(19): 166 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201619050.htm

    王苇, 黄尚宇, 廖行, 等.电磁压制Ag-Cu-In-Sn钎料烧结工艺及润湿性能的研究.热加工工艺, 2016, 45(19): 166 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201619050.htm
    [16] Liu Y, Li Y M, Xia Q K, et al. Experimental study on discrete element simulation of powder injection molding. JMater Eng, 2014(4): 85 doi: 10.3969/j.issn.1001-4381.2014.04.015

    刘煜, 李益民, 夏卿坤, 等.粉末注射成形的离散元模拟实验研究.材料工程, 2014(4): 85 doi: 10.3969/j.issn.1001-4381.2014.04.015
    [17] Shen X P, Xu G S. Defect analysis of powder metallurgy compact. Powder Metall Technol, 2012, 30(4): 279 doi: 10.3969/j.issn.1001-3784.2012.04.007

    申小平, 许桂生.粉末冶金压坯缺陷分析.粉末冶金技术, 2012, 30(4): 279 doi: 10.3969/j.issn.1001-3784.2012.04.007
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  175
  • HTML全文浏览量:  65
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-28
  • 刊出日期:  2019-06-27

目录

    /

    返回文章
    返回