18Ni300模具钢激光选区熔化工艺优化及力学性能研究

魏富涛 许冠 毛卫东 温利平 黄嘉豪 肖志瑜

魏富涛, 许冠, 毛卫东, 温利平, 黄嘉豪, 肖志瑜. 18Ni300模具钢激光选区熔化工艺优化及力学性能研究[J]. 粉末冶金技术, 2019, 37(3): 214-219. doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.009
引用本文: 魏富涛, 许冠, 毛卫东, 温利平, 黄嘉豪, 肖志瑜. 18Ni300模具钢激光选区熔化工艺优化及力学性能研究[J]. 粉末冶金技术, 2019, 37(3): 214-219. doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.009
WEI Fu-tao, XU Guan, MAO Wei-dong, WEN Li-ping, HUANG Jia-hao, XIAO Zhi-yu. Research on the process optimization of selective laser melting and the mechanical properties of 18Ni300 die steel[J]. Powder Metallurgy Technology, 2019, 37(3): 214-219. doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.009
Citation: WEI Fu-tao, XU Guan, MAO Wei-dong, WEN Li-ping, HUANG Jia-hao, XIAO Zhi-yu. Research on the process optimization of selective laser melting and the mechanical properties of 18Ni300 die steel[J]. Powder Metallurgy Technology, 2019, 37(3): 214-219. doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.009

18Ni300模具钢激光选区熔化工艺优化及力学性能研究

doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.009
基金项目: 

广东省科技攻关资助项目 2014B010129003

广东省科技攻关资助项目 2016B090931006

广东省自然科学基金资助项目 2015A030312003

详细信息
    通讯作者:

    肖志瑜, E-mail:zhyxiao@scut.edu.cn

  • 中图分类号: TG665

Research on the process optimization of selective laser melting and the mechanical properties of 18Ni300 die steel

More Information
  • 摘要: 优化激光选区熔化工艺, 制备18Ni300模具钢试样, 研究扫描速度和激光功率对模具钢力学性能的影响。结果表明, 当激光功率保持不变时, 随着扫描速度的增加, 18Ni300模具钢试样的相对密度和综合力学性能先增大后减小; 当扫描速度保持不变时, 随着激光功率的增加, 试样相对密度和综合力学性能逐渐增大; 能量密度在150 J·mm-3左右时, 试样的相对密度达到最高。激光选区熔化最优工艺参数是激光功率175W, 扫描速度400mm·s-1, 在此工艺参数下成形件的相对密度为99.58%, 抗拉强度、显微硬度和断后伸长率分别为1101 MPa、HV 348.4和6.44%。
  • 图  1  18Ni300合金粉末颗粒形貌

    Figure  1.  Particle morphology of 18Ni300 alloy powders

    图  2  18Ni300合金激光选区熔化试样成形效果

    Figure  2.  18Ni300 alloy specimen prepared by SLM

    图  3  拉伸试样尺寸图

    Figure  3.  Dimensions of the tensile specimen

    图  4  激光选区熔化工艺参数与18Ni300试样相对密度的关系:(a)激光功率;(b)扫描速度;(c)能量密度

    Figure  4.  Relationship between processing parameters of SLM and relative density of 18Ni300 specimen: (a)laser power; (b) scanning speed; (c) energy density

    图  5  试样熔道搭接: (a)上表面; (b)侧面

    Figure  5.  Weld path lap of the specimen: (a) top surface; (b) side view

    图  6  激光功率为175 W时, 不同扫描速度下试样的光学显微组织和综合力学性能: (a) 200 mm·s-1; (b) 400 mm·s-1; (c) 600 mm·s-1; (d) 800 mm·s-1; (e) 1000 mm·s-1; (f)综合力学性能

    Figure  6.  Optical microstructures and comprehensive properties of the specimens at different scanning speeds at 175 W: (a) 200 mm·s-1; (b) 400 mm·s-1; (c) 600 mm·s-1; (d) 800 mm·s-1; (e) 1000 mm·s-1; (f) the comprehensive mechanical properties

    图  7  扫描速度为400 mm·s-1时, 不同激光功率下试样的光学显微组织和综合力学性能: (a) 75 W; (b) 100 W; (c) 125 W; (d) 150 W; (e) 175 W; (f)综合力学性能

    Figure  7.  Optical microstructures and comprehensive properties of the specimens at different laser powers at 400 mm·s-1: (a) 75 W; (b) 100 W; (c) 125 W; (d) 150 W; (e) 175 W; (f) the comprehensive mechanical properties

    表  1  18Ni300合金粉末化学成分(质量分数)

    Table  1.   Chemical composition of 18Ni300 alloy powders/%

    Ni Co Mo Ti Al Si Mn Fe
    18.530 8.980 4.880 0.660 0.104 0.042 0.018 余量
    下载: 导出CSV
  • [1] Guo D H, Feng T, Duan G Q, et al. Application of injection mould with conformal cooling channel based on SLM. Electromach Mould, 2017(6): 42 doi: 10.3969/j.issn.1009-279X.2017.06.011

    郭东海, 冯涛, 段国庆, 等.基于SLM成形随形冷却水道注塑模具的应用.电加工与模具, 2017(6): 42 doi: 10.3969/j.issn.1009-279X.2017.06.011
    [2] Liu B, Tan J H, Wu C L. Design of injection mould with conformal cooling channel based on 3D printing. Eng Plast Appl, 2015, 43(10): 71 doi: 10.3969/j.issn.1001-3539.2015.10.014

    刘斌, 谭景焕, 吴成龙.基于3D打印的随形冷却水道注塑模具设计.工程塑料应用, 2015, 43(10): 71 doi: 10.3969/j.issn.1001-3539.2015.10.014
    [3] Shi Y S, Wu Z G, Wei Q S, et al. Effects of conformal cooling channel on injection molding and production efficiency. J Huazhong Univ Sci Technol Nat Sci, 2007, 35(3): 60 doi: 10.3321/j.issn:1671-4512.2007.03.018

    史玉升, 伍志刚, 魏青松, 等.随形冷却对注塑成型和生产效率的影响.华中科技大学学报(自然科学版), 2007, 35(3): 60 doi: 10.3321/j.issn:1671-4512.2007.03.018
    [4] Casavola K, Campanelli S L, Pappalettere C. Preliminary investigation on the residual strain distribution due to the selective laser melting process. J Strain Anal Eng Des, 2009, 44(1): 93. doi: 10.1243/03093247JSA464
    [5] Campanelli S L, Contuzzi N, Angelastro A, et al. Capabilities and performances of the selective laser melting process//In Tech. New Trends in Technologies: Devices, Computer, Communication and Industrial Systems, Eds by Meng Joo Er, 2010. http://www.researchgate.net/publication/221909648_Capabilities_and_Performances_of_the_Selective_Laser_Melting_Process
    [6] Tavares S S M, Abreu H F G, Neto J M, et al. Athermomagnetic study of the martensite-austenite phase transition in the maraging 350 steel. J Alloys Compd, 2003, 358(1-2): 152. doi: 10.1016/S0925-8388(03)00335-9
    [7] Pardal J M, Tavares S S M, Terra V F, et al. Modeling of precipitation hardening during the aging and overaging of18Ni-Co-Mo-Ti maraging 300 steel. J Alloys Compd, 2005, 393(1-2): 109. doi: 10.1016/j.jallcom.2004.09.049
    [8] Kang K. 18Ni-300 Powder Characteristics Used in Selective Laser Melting and Microstructure of Selective Laser Melted 18Ni-300 Steel[Dissertation]. Chongqing: Chongqing University, 2014

    康凯.选区激光成形用18Ni-300粉末特性及成形件组织结构的研究, 重庆: 重庆大学, 2014
    [9] Chao R C. Study on the Fabrication Process of 18Ni300Maraging Steel by Selective Laser Melting and the Experimental Analysis on Laser Melting of Metal Powders[Dissertation]. Shanghai: Shanghai JiaoTong University, 2014

    曹润辰. 18Ni300马氏体时效钢选区激光熔化工艺及金属粉末激光熔化实验研究, 上海: 上海交通大学, 2014
    [10] Zhou Y Y, Wang F, Xue C. Microstructure and mechanical properties of 3D printing 18Ni300 die steel. Phys Test Chem Anal Part A Phys Test, 2016, 52(4): 243 https://www.cnki.com.cn/Article/CJFDTOTAL-LHJW201604009.htm

    周隐玉, 王飞, 薛春. 3D打印18Ni300模具钢的显微组织及力学性能.理化检验(物理分册), 2016, 52(4): 243 https://www.cnki.com.cn/Article/CJFDTOTAL-LHJW201604009.htm
    [11] Contuzzi N, Campanelli S L, Casavola C, et al. Manufacturing and characterization of 18Ni marage 300lattice components by selective laser melting. Materials, 2013, 6(8): 3451. doi: 10.3390/ma6083451
    [12] Casalino G, Campanelli S L, Contuzzi N, et al. Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel. Opt Laser Technol, 2015, 65: 151. doi: 10.1016/j.optlastec.2014.07.021
    [13] Ciurana J, Hernandez L, Delgado J. Energy density analysis on single tracks formed by selective laser melting with CoCrMo powder material. Int J Adv Manuf Technol, 2013, 68(5-8): 1103. doi: 10.1007/s00170-013-4902-4
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  340
  • HTML全文浏览量:  93
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-25
  • 刊出日期:  2019-06-27

目录

    /

    返回文章
    返回