钛及钛合金人体植入材料研究进展

武秋池 纪箴 贾成厂 陈明营 吴超 邱倩 郎朝阳

武秋池, 纪箴, 贾成厂, 陈明营, 吴超, 邱倩, 郎朝阳. 钛及钛合金人体植入材料研究进展[J]. 粉末冶金技术, 2019, 37(3): 225-232. doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.011
引用本文: 武秋池, 纪箴, 贾成厂, 陈明营, 吴超, 邱倩, 郎朝阳. 钛及钛合金人体植入材料研究进展[J]. 粉末冶金技术, 2019, 37(3): 225-232. doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.011
WU Qiu-chi, JI Zhen, JIA Cheng-chang, CHEN Ming-ying, WU Chao, QIU Qian, LANG Chao-yang. Research progress on titanium and titanium alloys used as implant materials for human body[J]. Powder Metallurgy Technology, 2019, 37(3): 225-232. doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.011
Citation: WU Qiu-chi, JI Zhen, JIA Cheng-chang, CHEN Ming-ying, WU Chao, QIU Qian, LANG Chao-yang. Research progress on titanium and titanium alloys used as implant materials for human body[J]. Powder Metallurgy Technology, 2019, 37(3): 225-232. doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.011

钛及钛合金人体植入材料研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.011
详细信息
    通讯作者:

    纪箴, E-mail:jizhen@mater.ustb.edu.cn

  • 中图分类号: TG146.2

Research progress on titanium and titanium alloys used as implant materials for human body

More Information
  • 摘要: 钛及其合金因其具有低密度、高比强度、低弹性模量、良好的生物相容性和耐蚀性等特点, 被认为是一种理想的人体植入金属材料, 广泛应用于骨关节替换、牙齿修复等方面, 且对其的需求量快速增长; 同时, 钛也存在骨整合率低、抗菌性差、耐磨性差等缺陷, 急需进一步研究和改进。本文介绍了钛及钛合金作为人体植入材料的优异特性, 概述了国内外关于新型β型钛合金、表面改性钛合金、多孔钛合金、钛-陶复合材料的研究进展, 总结了钛及钛合金材料存在的一些问题, 为新型钛及钛合金材料的设计研发, 钛及钛合金综合性能的优化, 钛及钛合金使用寿命的延长提供参考。
  • 图  1  应力屏蔽效应: (a)健康股骨; (b)植入钛合金股骨[4]

    Figure  1.  Stress shielding effect: (a) healthy bone; (b) femoral implant[4]

    图  2  未经处理钛板(a)和经表面处理钛板(b)上的成骨细胞显微形貌[15]

    Figure  2.  SEM images of osteoblast on the pure titanium plate (a) and the surface-treated titanium plate (b)[15]

    图  3  添加不同质量分数NH4HCO3发泡剂制备的具有不同孔隙率的Ti–20Nb–15Zr钛合金显微形貌: (a) 0%NH4HCO3, 孔隙率6.06%; (b) 20%NH4HCO3, 孔隙率37.9%; (c) 35%NH4HCO3, 孔隙率50.5%; (d) 50%NH4HCO3, 孔隙率62.8%[16]

    Figure  3.  SEM images of Ti–20Nb–15Zr alloys in different porosities prepared by NH4HCO3 in different mass fractions as foaming agent: (a) 0%NH4HCO3, porosity 6.06%; (b) 20%NH4HCO3, porosity 37.9%; (c) 35%NH4HCO3, porosity 50.5%; (d) 50%NH4HCO3, porosity 62.8%[16]

    图  4  多孔材料孔隙大小对细胞增殖行为的影响: (a) 50μm; (b) 100μm; (c) 150μm; (d) 200μm; (e) 300μm; (f)图(e)中孔内部结构[18]

    Figure  4.  Effect of pore sizes for porous materials on cell proliferation behavior: (a) 50μm; (b) 100μm; (c) 150μm; (d) 200μm; (e) 300μm; (f) the internal structure of pores in

    图  5  不同孔隙率的Ti–Ti B复合材料样品经过压缩测试后的μ-CT图像: (a) 37%; (b) 17%; (c) 10%[19]

    Figure  5.  μ-CT images of porous Ti–Ti B composite samples for different porosities after compression testing: (a) 37%; (b) 17%; (c) 10%[19]

    图  6  20 V阳极氧化TiO2纳米管横断面显微形貌[21]

    Figure  6.  Coss-sectional microstructures of anodized TiO2 nanotubes at 20 V[21]

    图  7  不同温度沉积羟基磷灰石涂层显微形貌: (a) 25℃; (b) 45℃; (c) 65℃; (d) 85℃[21]

    Figure  7.  Microstructures of hydroxyapatite coatings at different deposition temperatures: (a) 25℃; (b) 45℃; (c) 65℃; (d) 85℃[21]

    图  8  Ti–10%HA (体积分数)复合材料表面在1 mol·L-1 H3PO4+2%HF (体积分数)电解质中处理前(a)和处理后(b)显微形貌[23]

    Figure  8.  Microstructures of Ti–10%HA composites by volume before (a) and after (b) electrochemical etching in 1 mol·L-1 H3PO4+2%HF by volume at 10 V for 10 min[23]

  • [1] Bothe R T, Beaton L E, Davenport H A, et al. Reaction of bone to multiple metallic implants. Surg Gynecol Obstet, 1940, 71(6): 598. http://ci.nii.ac.jp/naid/10007734955
    [2] Shi C X. Comprehensive Dictionary of Materials. Beijing: Chemical Industry Press, 1994

    师昌绪.材料大辞典.北京: 化学工业出版社, 1994
    [3] Zhan W G. The research, production and application of titanium and titanium alloy for medical functional materials. Titanium Ind Prog, 2007, 24(1): 4 https://www.cnki.com.cn/Article/CJFDTOTAL-TGYJ200701003.htm

    詹文革.生物医用钛及钛合金的研制、生产和应用.钛工业进展, 2007, 24(1): 4 https://www.cnki.com.cn/Article/CJFDTOTAL-TGYJ200701003.htm
    [4] DoITPoMS. Materials selection of femoral stem component. Cambridge, University of Cambridge, 2006.http://www.doitpoms.ac.uk/tlplib/bones/stem.php.
    [5] Sakaguchi N, Niinomi M, Akahori T, et al. Effect of Ta content on mechanical properties of Ti-30Nb-XTa-5Zr. Mater Sci Eng C, 2005, 25(3): 370. doi: 10.1016/j.msec.2005.04.003
    [6] Li Y Y, Zou L M, Yang C. Fabrication of biomedical titanium alloys with high strength and low modulus by means of powder metallurgy. J South China Univ Technol Nat Sci, 2012, 40(10): 43 https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201210007.htm

    李元元, 邹黎明, 杨超.粉末冶金法合成高强低模超细晶医用钛合金.华南理工大学学报(自然科学版), 2012, 40(10): 43 https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201210007.htm
    [7] Raducanu D, Vasilescu E, Cojocaru V D, et al. Mechanical and corrosion resistance of a new nanostructured Ti-Zr-Ta-Nb alloy. J Mech Behav Biomed Mater, 2011, 4(7): 1421. doi: 10.1016/j.jmbbm.2011.05.012
    [8] Zhang R, Wan Y, Ai X, et al. Preparation of micro-nanostructure on titanium implants and its bioactivity. Trans Nonferrous Met Soc China, 2016, 26(4): 1019. doi: 10.1016/S1003-6326(16)64217-6
    [9] Kim H G, Ahn S H, Kim J G, et al. Corrosion performance of diamond-like carbon(DLC)-coated Ti alloy in the simulated body fluid environment. Diamond Relat Mater, 2005, 14(1): 35. doi: 10.1016/j.diamond.2004.06.034
    [10] Kim J G, Lee K R, Yang S J. Wear-corrosion performance of Si-DLC coatings on Ti-6Al-4V substrate. J Biomed Mater Res Part A, 2008, 86(1): 41. doi: 10.1002/jbm.a.31632/full
    [11] Hauert R, Falub C V, Thorwarth G, et al. Retrospective lifetime estimation of failed and explanted diamond-like carbon coated hip joint balls. Acta Biomater, 2012, 8(8): 3170. doi: 10.1016/j.actbio.2012.04.016
    [12] Liu X Y, Chu P K, Ding C X. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R, 2004, 47(3-4): 49. doi: 10.1016/j.mser.2004.11.001
    [13] Kim S K, Lee J B, Koak J Y, et al. An abutment screw loosening study of a diamond like carbon-coated CPtitanium implant. J Oral Rehabil, 2005, 32(5): 346. doi: 10.1111/j.1365-2842.2004.01475.x
    [14] Korn P, Schulz M C, Hintze V, et al. Chondroitin sulfate and sulfated hyaluronan-containing collagen coatings of titanium implants influence peri-implant bone formation in a minipig model. J Biomed Mater Res A, 2014, 102(7): 2334. doi: 10.1002/jbm.a.34913
    [15] Tsukanaka M, Yamamoto K, Fujibayashi S, et al. Evaluation of bioactivity of alkali-and heat-treated titanium using fluorescent mouse osteoblasts. J Bone Miner Metab, 2014, 32(6): 660. doi: 10.1007/s00774-013-0544-8
    [16] Rao X, Chu C L, Zheng Y Y. Phase composition, microstructure, and mechanical properties of porous Ti-Nb-Zr alloys prepared by a two-step foaming powder metallurgy method. J Mech Behav Biomed Mater, 2014, 34(6): 27. http://www.ncbi.nlm.nih.gov/pubmed/24556322
    [17] Hollander D A, von Walter M, Wirtz T, et al. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming. Biomaterials, 2006, 27(7): 955. doi: 10.1016/j.biomaterials.2005.07.041
    [18] Xue W C, Krishna B V, Bandyopadhyay A, et al. Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater, 2007, 3(6): 1007. doi: 10.1016/j.actbio.2007.05.009
    [19] Attar H, Löber L, Funk A, et al. Mechanical behavior of porous commercially pure Ti and Ti-TiB composite materials manufactured by selective laser melting. Mater Sci Eng A, 2015, 625: 350. doi: 10.1016/j.msea.2014.12.036
    [20] Mao M Y. Mechanical Properties and Biocompatibility of Porous Ti6Al4V Implant Fabricated by Selective Laser Sintering[Dissertation]. Jinan: Shandong University, 2016

    毛梦芸.选择性激光烧结制备多孔钛的机械性能与生物相容性研究, 济南: 山东大学, 2016
    [21] Yan Y J. Preparation and Bioactivity of Calcium Phosphate/TiO2 Nanotube Composite Coating on Titanium[Dissertation]. Chengdu: University of Electronic Science and Technology of China, 2015

    严雅静.金属钛表面TiO2纳米管磷灰石复合涂层的制备与生物活性研究, 成都: 电子科技大学, 2015
    [22] Zhang X W. Research of Osteogenesis Enhancement Function of Additively Manufactured Porous Ti Implants Combined with CS/HA Coating[Dissertation]. Jinan: Shandong University, 2016

    张欣蔚. 3D打印多孔钛种植体结合CS/HA涂层促骨结合作用的研究, 济南: 山东大学, 2016
    [23] Niespodziana K, Jurczyk K, Jakubowicz J, et al. Fabrication and properties of titanium-hydroxyapatite nanocomposites. Mater Chem Phys, 2010, 123(1): 160. doi: 10.1016/j.matchemphys.2010.03.076
    [24] Xie C M, Lu X, Wang K F, et al. Silver nanoparticles and growth factors incorporated hydroxyapatite coatings on metallic implant surfaces for enhancement of osteoinductivity and antibacterial properties. ACS Appl Mater Interfaces, 2014, 6(11): 8580. doi: 10.1021/am501428e
    [25] Kirmanidou Y, Sidira M, Drosou M E, et al. New Ti-alloys and surface modifications to improve the mechanical properties and the biological response to orthopedic and dental implants: a review. Biomed Res Int, 2016, 2016(2): 2908570. http://downloads.hindawi.com/journals/bmri/2016/2908570.xml
  • 加载中
图(8)
计量
  • 文章访问数:  526
  • HTML全文浏览量:  66
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-19
  • 刊出日期:  2019-06-27

目录

    /

    返回文章
    返回