石墨鳞片表面镀铬对石墨鳞片/铜复合材料组织和性能的影响

张忍 王旭磊 何新波

张忍, 王旭磊, 何新波. 石墨鳞片表面镀铬对石墨鳞片/铜复合材料组织和性能的影响[J]. 粉末冶金技术, 2019, 37(4): 248-254. doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.002
引用本文: 张忍, 王旭磊, 何新波. 石墨鳞片表面镀铬对石墨鳞片/铜复合材料组织和性能的影响[J]. 粉末冶金技术, 2019, 37(4): 248-254. doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.002
ZHANG Ren, WANG Xu-lei, HE Xin-bo. Effect of Cr coating on microstructure and properties of graphite flake/Cu composites[J]. Powder Metallurgy Technology, 2019, 37(4): 248-254. doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.002
Citation: ZHANG Ren, WANG Xu-lei, HE Xin-bo. Effect of Cr coating on microstructure and properties of graphite flake/Cu composites[J]. Powder Metallurgy Technology, 2019, 37(4): 248-254. doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.002

石墨鳞片表面镀铬对石墨鳞片/铜复合材料组织和性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.002
基金项目: 

国家重点基础研究发展规划资助项目 2016YFB0301400

详细信息
    通讯作者:

    何新波, E-mail: xb_he@163.com

  • 中图分类号: TB331

Effect of Cr coating on microstructure and properties of graphite flake/Cu composites

More Information
  • 摘要: 通过盐浴镀覆在石墨鳞片表面镀铬,随后采用真空热压烧结技术制备了镀铬石墨鳞片/铜复合材料,研究了铬镀层的表面形貌和物相组成,并分析了铬镀层对石墨鳞片/铜复合材料显微结构和性能的影响。结果表明,盐浴镀铬层主要由Cr3C2和Cr7C3组成,经热压烧结后Cr7C3与石墨反应生成了Cr3C2;石墨鳞片表面镀铬可以明显减少石墨鳞片/铜复合材料界面处的孔隙,提高复合材料的热导率和抗弯强度,与未镀覆的复合材料相比,当镀铬石墨鳞片的体积分数为60%时,复合材料平面热导率相从594 W·m-1·K-1提高至625 W·m-1·K-1,抗弯强度提升65%。
  • 图  1  石墨鳞片显微形貌和表面铬元素分布:(a)原始石墨鳞片;(b)镀铬石墨鳞片;(c)镀铬石墨鳞片表面铬元素分布

    Figure  1.  SEM images and Cr element distribution of graphite flakes: (a) raw graphite flakes; (b) Cr-coated graphite flakes; (c) element distribution of Cr-coated composites

    图  2  原始石墨鳞片(a)和镀铬石墨鳞片(b)原子力显微形貌

    Figure  2.  AFM images of the raw graphite flakes (a) and Cr-coated graphite flakes (b)

    图  3  镀铬石墨鳞片X射线衍射图谱

    Figure  3.  XRD pattern of Cr-coated graphite flakes

    图  4  镀铬石墨鳞片Cr2p的高分辨X射线光电子图谱

    Figure  4.  High-resolution XPS spectrum of Cr2p for the Cr-coated graphite flakes

    图  5  含不同体积分数镀铬石墨鳞片的铜复合材料扫描电子显微形貌:(a)30%;(b)40%;(c)50%;(d)60%

    Figure  5.  SEM images of Cr-coated graphite flake/Cu composites in different volume fractions of graphite flakes: (a) 30%; (b) 40%; (c) 50%; (d) 60%

    图  6  未镀铬和镀铬石墨鳞片/铜复合材料的X射线衍射图谱

    Figure  6.  XRD patterns of uncoated and Cr-coated graphite flake/Cu composites

    图  7  石墨鳞片/铜复合材料的界面形貌及元素分布:(a)未镀覆形貌;(b)镀铬形貌;(c)镀铬复合材料界面处的元素面分布

    Figure  7.  Interface morphology and element distribution of graphite flake/Cu composites: (a) uncoated graphite flake/Cu composites; (b) Cr-coated graphite flake/Cu composites; (c) element distribution of Cr-coated composites

    图  8  含不同体积分数石墨鳞片的铜基复合材料的热导率

    Figure  8.  Thermal conductivity of graphite flake/Cu composites in different volume fractions of graphite flakes

    图  9  含不同体积分数石墨鳞片的铜基复合材料抗弯强度

    Figure  9.  Bending strength of graphite flake/Cu composites in different volume fractions of graphite flakes

    图  10  石墨鳞片/铜复合材料的断口形貌:(a)未镀覆;(b)镀铬

    Figure  10.  Fracture surface of graphite flake/Cu composites: (a) uncoated composites; (b) Cr-coated composites

    表  1  用于界面热阻计算的相关参数[7, 11]

    Table  1.   Correlation parameters for the theoretical calculation of interface resistance [7, 11]

    材料 热容/(J·kg-1·K-1) 密度/(kg·m-3) 声子速度/(m·s-1)
    石墨 385 8960 2881
    710 2260 14800
    Cr3C2 456 6680 5493
    下载: 导出CSV
  • [1] Cui W, Ren S B, Xu H, et al. Research on preparation technology for porous diamond preform to vacuum pressure infiltration. Powder Metall Technol, 2016, 34(2): 125 doi: 10.3969/j.issn.1001-3784.2016.02.009

    崔巍, 任淑彬, 许慧, 等. 熔渗用多孔金刚石预制坯制备工艺的研究. 粉末冶金技术, 2016, 34(2): 125 doi: 10.3969/j.issn.1001-3784.2016.02.009
    [2] Chen H, Jia C C, Chu K, et al. Research on increasing thermal conductivity of diamond/copper composites by improving the interface condition. Powder Metall Technol, 2010, 28(2): 143 http://pmt.ustb.edu.cn/article/id/fmyjjs201002014

    陈惠, 贾成厂, 褚克, 等. 通过改善界面状态提高金刚石-Cu复合材料导热性的研究. 粉末冶金技术, 2010, 28(2): 143 http://pmt.ustb.edu.cn/article/id/fmyjjs201002014
    [3] Chu K, Wang X H, Wang F, et al. Largely enhanced thermal conductivity of graphene/copper composites with highly aligned graphene network. Carbon, 2018, 127: 102 doi: 10.1016/j.carbon.2017.10.099
    [4] Zhang L M, Chen W S, Luo G Q, et al. Low-temperature densification and excellent thermal properties of W–Cu thermal-management composites prepared from copper-coated tungsten powders. J Alloys Compd, 2014, 588: 49 doi: 10.1016/j.jallcom.2013.11.003
    [5] Chen G Q, Yang W S, Dong R H, et al. Interfacial microstructure and its effect on thermal conductivity of SiCp/Cu composites. Mater Des, 2014, 63: 109 doi: 10.1016/j.matdes.2014.05.068
    [6] Yang L, Sun L, Bai W W, et al. Thermal conductivity of Cu-Ti/diamond composites via spark plasma sintering. Diamond Relat Mater, 2019, 94: 37 doi: 10.1016/j.diamond.2019.02.014
    [7] Yuan M Y, Tan Z Q, Fan G L, et al. Theoretical modelling for interface design and thermal conductivity prediction in diamond/Cu composites. Diamond Relat Mater, 2018, 81: 38 doi: 10.1016/j.diamond.2017.11.010
    [8] Wang L H, Li J W, Bai G Z, et al. Interfacial structure evolution and thermal conductivity of Cu-Zr/diamond composites prepared by gas pressure infiltration. J Alloys Compd, 2019, 781: 800 doi: 10.1016/j.jallcom.2018.12.053
    [9] Zhou C, Ji G, Chen Z, et al. Fabrication, interface characterization and modeling of oriented graphite flakes/Si/Al composites for thermal management applications. Mater Des, 2014, 63: 719 doi: 10.1016/j.matdes.2014.07.009
    [10] Bai H N, Xue C, Lyu J L, et al. Thermal conductivity and mechanical properties of flake graphite/copper composite with a boron carbide-boron nano-layer on graphite surface. Composites Part A, 2018, 106: 42 doi: 10.1016/j.compositesa.2017.11.019
    [11] Ren S B, Chen J H, He X B, et al. Effect of matrix-alloying-element chromium on the microstructure and properties of graphite flakes/copper composites fabricated by hot pressing sintering. Carbon, 2018, 127: 412 doi: 10.1016/j.carbon.2017.11.033
    [12] Liu N, Huang Y P, Liu H Y, et al. High thermal-conductivity diamond/Cu composites fabricated by infiltration. Powder Metall Technol, 2014, 32(1): 59 doi: 10.3969/j.issn.1001-3784.2014.01.011

    刘楠, 黄愿平, 刘海彦, 等. 熔渗法制备高导热金刚石/Cu复合材料. 粉末冶金技术, 2014, 32(1): 59 doi: 10.3969/j.issn.1001-3784.2014.01.011
    [13] Zhu Y B, Bai H, Xue C, et al. Thermal conductivity and mechanical properties of a flake graphite/Cu composite with a silicon nano-layer on a graphite surface. RSC Adv, 2016, 100(6): 98190 http://smartsearch.nstl.gov.cn/paper_detail.html?id=addccdb22770b666085b2ccaabfb737f
    [14] Wu Q, Jia C C, Nie J H. Friction and wear properties of magnesium matrix composites reinforced by tungsten-coated carbon nanotubes. Powder Metall Technol, 2018, 36(6): 423 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201806004.htm

    吴琼, 贾成厂, 聂俊辉. 镀钨碳纳米管增强镁基复合材料的摩擦磨损性能研究. 粉末冶金技术, 2018, 36(6): 423 https://www.cnki.com.cn/Article/CJFDTOTAL-FMYJ201806004.htm
    [15] Detroye M, Reniers F, Buess-Herman C, et al. AES-XPS study of chromium carbides and chromium iron carbides. Appl Surf Sci, 1999, 144-145: 78 doi: 10.1016/S0169-4332(98)00769-7
    [16] Castillejo F E, Marulanda D M, Olaya J J, et al. Wear and corrosion resistance of niobium-chromium carbide coatings on AISI D2 produced through TRD. Surf Coat Technol, 2014, 254: 104 doi: 10.1016/j.surfcoat.2014.05.069
    [17] Xue C, Bai H, Tao P F, et al. Thermal conductivity and mechanical properties of flake graphite/Al composite with a SiC nano-layer on graphite surface. Mater Des, 2016, 108: 250 doi: 10.1016/j.matdes.2016.06.122
    [18] Zhang R, He X B, Chen Z, et al. Influence of Ti content on the microstructure and properties of graphite flake/Cu-Ti composites fabricated by vacuum hot pressing. Vacuum, 2017, 141: 265 doi: 10.1016/j.vacuum.2017.04.026
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  297
  • HTML全文浏览量:  52
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-22
  • 刊出日期:  2019-08-27

目录

    /

    返回文章
    返回