添加剂Nb和烧结温度对ZrN粉末材料性能的影响

吴峥强

吴峥强. 添加剂Nb和烧结温度对ZrN粉末材料性能的影响[J]. 粉末冶金技术, 2019, 37(4): 255-258, 263. doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.003
引用本文: 吴峥强. 添加剂Nb和烧结温度对ZrN粉末材料性能的影响[J]. 粉末冶金技术, 2019, 37(4): 255-258, 263. doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.003
WU Zheng-qiang. Effects of additive Nb and sintering temperature on the properties of ZrN powder materials[J]. Powder Metallurgy Technology, 2019, 37(4): 255-258, 263. doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.003
Citation: WU Zheng-qiang. Effects of additive Nb and sintering temperature on the properties of ZrN powder materials[J]. Powder Metallurgy Technology, 2019, 37(4): 255-258, 263. doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.003

添加剂Nb和烧结温度对ZrN粉末材料性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.003
详细信息
    通讯作者:

    吴峥强, E-mail: chenqinn529393@126.com

  • 中图分类号: TB333

Effects of additive Nb and sintering temperature on the properties of ZrN powder materials

More Information
  • 摘要: 在ZrN粉末中添加Nb粉,经热压烧结得到Nb-ZrN粉末材料,研究添加剂Nb与烧结温度对Nb-ZrN材料烧结和力学性能的影响。结果表明:提高烧结温度有利于加快材料的致密化,Nb-ZrN1480粉末出现了1个致密化速率峰,其它粉末材料还生成了另外2个小的致密化速率峰,烧结Nb-ZrN1680粉末的相对密度达到98.6%。各粉末材料的X射线衍射谱图中都存在ZrO2衍射峰,添加剂Nb在烧结阶段全部溶入ZrN内。添加Nb后,ZrN晶格常数减小,随烧结温度上升,ZrN晶格常数基本保持稳定。纯ZrN材料表现为沿晶断裂,添加Nb后,粉末材料发生穿晶断裂,气孔数明显降低。
  • 图  1  Nb-ZrN粉末材料致密化速率与烧结温度的关系

    Figure  1.  Relationship between densification rate and sintering temperature of Nb-ZrN powder materials

    图  2  Nb-ZrN粉末材料扫描电子显微形貌

    Figure  2.  Scanning electron microscopy images of Nb-ZrN powder materials

    图  3  Nb-ZrN粉末材料物相分析

    Figure  3.  Phase analysis of Nb-ZrN powder materials

    图  4  Nb-ZrN粉末材料断口形貌

    Figure  4.  Fracture morphology of Nb-ZrN powder materials

    表  1  Nb-ZrN粉末材料组成及对应烧结温度

    Table  1.   Composition of Nb-ZrN powder materials and the corresponding sintering temperature

    材料编号 材料组成(质量分数)/ % 烧结温度/℃
    Nb ZrN
    ZrN1580 0 100 1580
    Nb-ZrN1480 8 92 1480
    Nb-ZrN1580 8 92 1580
    Nb-ZrN1680 8 92 1680
    下载: 导出CSV

    表  2  Nb-ZrN粉末材料的物理和力学性能

    Table  2.   Physical and mechanical properties of Nb-ZrN powder materials

    材料编号 相对密度/% 弹性模量/GPa 维氏硬度/GPa 断裂韧性/(MPa·m1/2) 屈服强度/MPa
    ZrN1580 97.8 232 10.4 4.2 108
    Nb-ZrN1480 97.1 266 12.3 5.8 286
    Nb-ZrN1580 98.6 252 11.2 6.6 412
    Nb-ZrN1680 98.0 248 11.8 6.2 336
    下载: 导出CSV
  • [1] Su G K, Tan D W, Guo W M, et al. Preparation of Si3N4–ZrSi2–ZrN–BN ceramic by reactive hot pressing and its processing properties. J Chin Ceram Soc, 2017, 45(6): 823 https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201706012.htm

    苏国康, 谭大旺, 郭伟明, 等. 反应热压烧结Si3N4–ZrSi2–ZrN–BN陶瓷及其加工性能. 硅酸盐学报, 2017, 45(6): 823 https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201706012.htm
    [2] Lü L, Yu Z M. Preparation and properties of TiN/ZrN anti-erosion multilayer coatings. Mater Res Appl, 2016, 10(1): 28 doi: 10.3969/j.issn.1673-9981.2016.01.006

    吕亮, 余志明. TiN/ZrN抗冲蚀多层膜制备及其性能研究. 材料研究与应用, 2016, 10(1): 28 doi: 10.3969/j.issn.1673-9981.2016.01.006
    [3] Lei R S, Chen G R, Wang M P. Effect of Nb solute concentration on crystallite size refinement and strength enhancement in mechanically alloyed Cu-Nb alloys. Rare Met Mater Eng, 2018, 47(9): 2607 doi: 10.1016/S1875-5372(18)30196-6
    [4] Zhang Z, Yao X X, Ge P. Phase-field simulation of microstructures of Ti-Nb alloys in laser powder deposition additive manufacturing. Ordn Mater Sci Eng, 2018, 41(5): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201805002.htm

    张昭, 姚欣欣, 葛芃. Ti-Nb合金激光粉末沉积增材制造显微组织的相场模拟. 兵器材料科学与工程, 2018, 41(5): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201805002.htm
    [5] Yang Y, Jia J B, Liu W C, et al. Vacuum hot-pressing sintering processes for a powder metallurgy Ti-22Al-25Nb alloy. China Mech Eng, 2018, 29(10): 1227 doi: 10.3969/j.issn.1004-132X.2018.10.015

    杨越, 贾建波, 刘文超, 等. 粉末冶金Ti-22Al-25Nb合金的真空热压烧结工艺. 中国机械工程, 2018, 29(10): 1227 doi: 10.3969/j.issn.1004-132X.2018.10.015
    [6] Liu H, Ma H W, Li X C, et al. Effect of ZrN-Sialon composite powder on properties of Al2O3-C refractory. J Synth Cryst, 2018, 47(2): 280 doi: 10.3969/j.issn.1000-985X.2018.02.008

    刘贺, 马鸿文, 李小超, 等. ZrN-Sialon复相粉体对Al2O3-C耐火材料性能的影响. 人工晶体学报, 2018, 47(2): 280 doi: 10.3969/j.issn.1000-985X.2018.02.008
    [7] Mao S B, Zhang L, Zhang S H. Influence of substrate bias voltage on microstructures and mechanical properties of ZrN coatings. Chin J Vac Sci Technol, 2017, 37(9): 916 https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201709013.htm

    毛绍宝, 张林, 张世宏. 基体偏压对ZrN涂层微观结构及力学性能的影响. 真空科学与技术学报, 2017, 37(9): 916 https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201709013.htm
    [8] Guo Y, Liu Z M, Su P F, et al. Microstructure and mechanical properties of nitride dispersion strengthened ferrite-based alloy. Powder Metall Technol, 2016, 34(5): 361 doi: 10.3969/j.issn.1001-3784.2016.05.008

    郭旸, 刘祖铭, 苏鹏飞, 等. 氮化物弥散强化铁基合金的显微组织和力学性能研究. 粉末冶金技术, 2016, 34(5): 361 doi: 10.3969/j.issn.1001-3784.2016.05.008
    [9] Yin Y, Ma B Y. The latest development of inorganic powder materials preparation by molten salt synthesis. Rare Met Cem Carb, 2016, 44(4): 66 https://www.cnki.com.cn/Article/CJFDTOTAL-XYJY201604016.htm

    尹月, 马北越. 熔盐合成法制备无机粉末材料新进展. 稀有金属与硬质合金, 2016, 44(4): 66 https://www.cnki.com.cn/Article/CJFDTOTAL-XYJY201604016.htm
    [10] Lu F G, Qiu L X, Ding Z H, et al. High-pressure synthesis and properties characterization of ZrN-ZrB2 nanocomposites. Chin J High Press Phys, 2011, 25(2): 104 https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201102001.htm

    陆凤国, 邱利霞, 丁战辉, 等. ZrN-ZrB2纳米复合材料的高压制备及性能表征. 高压物理学报, 2011, 25(2): 104 https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201102001.htm
    [11] Huang R X, Qi Z B, Sun P, et al. Effect of deposition temperature on structure and mechanical properties of ZrN nano-coatings. J Xiamen Univ Nat Sci, 2010, 49(5): 654 https://www.cnki.com.cn/Article/CJFDTOTAL-XDZK201005015.htm

    黄若轩, 祁正兵, 孙鹏, 等. 沉积温度对纳米ZrN涂层结构及性能的影响. 厦门大学学报(自然科学版), 2010, 49(5): 654 https://www.cnki.com.cn/Article/CJFDTOTAL-XDZK201005015.htm
    [12] Xu Y S, Zheng L F, Lu M S, et al. Study on process and performance of TiN coating deposited onto cemented carbides cutting. Hot Working Technol, 2010, 39(6): 97 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201006033.htm

    徐玉松, 郑莉芬, 陆敏松, 等. TaCp增强YG11C合金表面改性工艺及性能研究. 热加工工艺, 2010, 39(6): 97 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201006033.htm
    [13] Li F Q, Hong R J, Yu Z M, et al. Microstructure and corrosion resistance of Ti/TiN/Zr/ZrN multilayer film deposited by cathodic ion plating in vacuum. Mater Prot, 2009, 42(10): 17 https://www.cnki.com.cn/Article/CJFDTOTAL-CLBH200910007.htm

    李福球, 洪瑞江, 余志明, 等. 真空阴极离子镀法制备Ti/TiN/Zr/ZrN多层膜. 材料保护, 2009, 42(10): 17 https://www.cnki.com.cn/Article/CJFDTOTAL-CLBH200910007.htm
    [14] Xu X M, Wang J, Zhao Y, et al. Effect of interface and preferred orientation on the hardness of TiN/ZrN multilayers. Acta Phys Sin, 2006, 55(10): 5380 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200610065.htm

    徐晓明, 王娟, 赵阳, 等. 界面和择优取向对TiN/ZrN纳米多层膜硬度变化的影响. 物理学报, 2006, 55(10): 5380 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200610065.htm
    [15] He Z Y, Shan W R, Zhang Y Q, et al. Effects of sintering temperature on microstructure and mechanical properties of calcium pyrophosphate/Ti-35Nb-7Zr composite. Acta Mater Compos Sin, 2017, 34(5): 1009 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201705011.htm

    何正员, 单文瑞, 张玉勤, 等. 烧结温度对焦磷酸钙/Ti-35Nb-7Zr复合材料微观组织及力学性能的影响. 复合材料学报, 2017, 34(5): 1009 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201705011.htm
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  100
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-19
  • 刊出日期:  2019-08-27

目录

    /

    返回文章
    返回